adjust corners and crop the image openCV

后端 未结 2 1375
萌比男神i
萌比男神i 2020-12-14 12:52

I am using open CV,in IOS. I already detected the boundary of the paper sheet in an Image as show in image and , Now I have to drag these boundary line on touch for adjusti

相关标签:
2条回答
  • 2020-12-14 13:18

    After you got the corners you have to deskewing the paper and "extract" it to a new image.

    You should do the following:

    1. Sort corner points (the order matters; they must be in the same order in both vectors)
    2. cv::getAffineTransform
    3. cv::warpAffine

    I wrote myself a helper function, which takes a std::vector with four cv::Point in it and sorts them in clockwise order beginning in the upper left. For more information on this topic take a look at these thread:

    • Sort points in clockwise order?
    • Sort Four Points in Clockwise Order
    • Sorting of Points in 2D space

    Another thing you should take into account is the size of the paper you want to extract. In my example I assume you're extracting a DIN A4 paper (210x297mm). Feel free to edit paperWidth and paperHeight inside my code.

    Combining everything looks like this:

    // Helper
    cv::Point getCenter( std::vector<cv::Point> points ) {
    
        cv::Point center = cv::Point( 0.0, 0.0 );
    
        for( size_t i = 0; i < points.size(); i++ ) {
            center.x += points[ i ].x;
            center.y += points[ i ].y;
        }
    
        center.x = center.x / points.size();
        center.y = center.y / points.size();
    
        return center;
    
    }
    
    // Helper;
    // 0----1
    // |    |
    // |    |
    // 3----2
    std::vector<cv::Point> sortSquarePointsClockwise( std::vector<cv::Point> square ) {
    
        cv::Point center = getCenter( square );
    
        std::vector<cv::Point> sorted_square;
        for( size_t i = 0; i < square.size(); i++ ) {
            if ( (square[i].x - center.x) < 0 && (square[i].y - center.y) < 0 ) {
                switch( i ) {
                    case 0:
                        sorted_square = square;
                        break;
                    case 1:
                        sorted_square.push_back( square[1] );
                        sorted_square.push_back( square[2] );
                        sorted_square.push_back( square[3] );
                        sorted_square.push_back( square[0] );
                        break;
                    case 2:
                        sorted_square.push_back( square[2] );
                        sorted_square.push_back( square[3] );
                        sorted_square.push_back( square[0] );
                        sorted_square.push_back( square[1] );
                        break;
                    case 3:
                        sorted_square.push_back( square[3] );
                        sorted_square.push_back( square[0] );
                        sorted_square.push_back( square[1] );
                        sorted_square.push_back( square[2] );
                        break;
                }
                break;
            }
        }
    
        return sorted_square;
    
    }
    
    // Helper
    float distanceBetweenPoints( cv::Point p1, cv::Point p2 ) {
    
        if( p1.x == p2.x ) {
            return abs( p2.y - p1.y );
        }
        else if( p1.y == p2.y ) {
            return abs( p2.x - p1.x );
        }
        else {
            float dx = p2.x - p1.x;
            float dy = p2.y - p1.y;
            return sqrt( (dx*dx)+(dy*dy) );
        }
    }
    
    cv::Mat getPaperAreaFromImage( cv::Mat image, std::vector<cv::Point> square )
    {
    
        // declare used vars
        int paperWidth  = 210; // in mm, because scale factor is taken into account
        int paperHeight = 297; // in mm, because scale factor is taken into account
        cv::Point2f imageVertices[4];
        float distanceP1P2;
        float distanceP1P3;
        BOOL isLandscape = true;
        int scaleFactor;
        cv::Mat paperImage;
        cv::Mat paperImageCorrected;
        cv::Point2f paperVertices[4];
    
        // sort square corners for further operations
        square = sortSquarePointsClockwise( square );
    
        // rearrange to get proper order for getPerspectiveTransform()
        imageVertices[0] = square[0];
        imageVertices[1] = square[1];
        imageVertices[2] = square[3];
        imageVertices[3] = square[2];
    
        // get distance between corner points for further operations
        distanceP1P2 = distanceBetweenPoints( imageVertices[0], imageVertices[1] );
        distanceP1P3 = distanceBetweenPoints( imageVertices[0], imageVertices[2] );
    
        // calc paper, paperVertices; take orientation into account
        if ( distanceP1P2 > distanceP1P3 ) {
            scaleFactor =  ceil( lroundf(distanceP1P2/paperHeight) ); // we always want to scale the image down to maintain the best quality possible
            paperImage = cv::Mat( paperWidth*scaleFactor, paperHeight*scaleFactor, CV_8UC3 );
            paperVertices[0] = cv::Point( 0, 0 );
            paperVertices[1] = cv::Point( paperHeight*scaleFactor, 0 );
            paperVertices[2] = cv::Point( 0, paperWidth*scaleFactor );
            paperVertices[3] = cv::Point( paperHeight*scaleFactor, paperWidth*scaleFactor );
        }
        else {
            isLandscape = false;
            scaleFactor =  ceil( lroundf(distanceP1P3/paperHeight) ); // we always want to scale the image down to maintain the best quality possible
            paperImage = cv::Mat( paperHeight*scaleFactor, paperWidth*scaleFactor, CV_8UC3 );
            paperVertices[0] = cv::Point( 0, 0 );
            paperVertices[1] = cv::Point( paperWidth*scaleFactor, 0 );
            paperVertices[2] = cv::Point( 0, paperHeight*scaleFactor );
            paperVertices[3] = cv::Point( paperWidth*scaleFactor, paperHeight*scaleFactor );
        }
    
        cv::Mat warpMatrix = getPerspectiveTransform( imageVertices, paperVertices );
        cv::warpPerspective(_image, paperImage, warpMatrix, paperImage.size(), cv::INTER_LINEAR, cv::BORDER_CONSTANT );
    
        // we want portrait output
        if ( isLandscape ) {
            cv::transpose(paperImage, paperImageCorrected);
            cv::flip(paperImageCorrected, paperImageCorrected, 1);
            return paperImageCorrected;
        }
    
        return paperImage;
    
    }
    

    Usage:

    // ... get paper square ...
    
    cv::Mat paperImage = getPaperAreaFromImage( srcImage, paperSquare );
    
    0 讨论(0)
  • 2020-12-14 13:19

    What you should do is :

    1. Feed the 4 corners that you have found and the 4 real corners of the image to cv::getPerspectiveTransform. It will give you a matrix of the perspective transformation that will warp the quadrangle to the whole image.

    2. Use cv::WarpPerspective to create the image you want.

    The links will take you to the documentation.

    EDIT : You could use cv::findHomography to do step 1. But this is more about having a lot of corresponding points and outliers.

    EDIT : Here is an example. It is with the C interface but you could easily make it to work with the c++

    #include <stdio.h>
    #include "highgui.h"
    #include "cv.h"
    
    int main( int argc, char** argv ) {
        // cvLoadImage determines an image type and creates datastructure with appropriate size
        IplImage* img = cvLoadImage( argv[1], CV_LOAD_IMAGE_COLOR);
        IplImage* img1 = cvCreateImage(
                cvSize(img->width, img->height),
                img->depth,
                img->nChannels
                );
    
        cvNamedWindow( "out", CV_WINDOW_AUTOSIZE );
        cvShowImage( "out", img1 );
        // create a window. Window name is determined by a supplied argument
        cvNamedWindow( argv[1], CV_WINDOW_AUTOSIZE );
        // Display an image inside and window. Window name is determined by a supplied argument
        cvShowImage( argv[1], img );
    
        // The part you need
        // Here is the points that you take the image from (the small quadrangle)
        CvPoint2D32f first[4] = {
          {0,0},
          {(img->width /4)* 3, img->height /4    },
          { img->width /4    ,(img->height /4) *3},
          {(img->width /4)* 3,(img->height /4) *3},
        };
        // Here are the points that you draw the quadrangle into (the four corners)
        CvPoint2D32f second[4] = {
          {0,0},
          {img->width,0},
          {0,img->height},
          {img->width,img->height}
        };
        // The part you need
        CvMat *transform = cvCreateMat(3,3, CV_32F);
        cvGetPerspectiveTransform(first,second, transform);
        cvWarpPerspective(img, img1, transform, CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS,
            cvScalarAll(0));
        // End of part you need
    
        cvShowImage( "out", img1 );
    
    
        // wait indefinitely for keystroke
        cvWaitKey(0);
        // release pointer to an object
        cvReleaseImage( &img );
        // Destroy a window
        cvDestroyWindow( argv[1] );
    }
    

    You should replace the array first with end points of the quadrangle you have found.

    EDIT : Here are some samples. I haven't looked them very well.

    Geometric Image Transformations

    cvGetPerspectiveTransform

    0 讨论(0)
提交回复
热议问题