static void Main()
{
DateTime currentTime = DateTime.Now;
int maxValue = 100;
int hour = currentTime.Hour;
int minute = currentTime.Minute;
int second = currentTime.Second;
int milisecond = currentTime.Millisecond;
int randNum = (((hour + 1) * (minute + 1) * (second + 1) * milisecond) % maxValue);
Console.WriteLine(randNum);
Console.ReadLine();
}
Above shows a very simple piece of code to generate random numbers. It is a console program written in C#. If you know any kind of basic programming this should be understandable and easy to convert to any other language desired.
The DateTime simply takes in a current date and time, most programming languages have a facility to do this.
The hour, minute, second and milisecond variables break the date time value it up into its component parts. We are only interested in these parts so can ignore day. Again, in most languages dates and times are usually presented as strings. In .Net we have facilities that allow us to parse this information easily. But in most other languages where times are presented as strings, its is not overly difficult to parse the string for the parts that you want and convert them to their numbers. These facilities are usually provided even in the oldest of languages.
The seed essentially gives us a starting number which always changes. Traditionally you would just multiply this number by a decimal value between 0 and 1 this cuts out that step.
The upperRange defines the maximum value. So the number generated will never be above this value. Also it will never be below 0. So no ngeatives. But if you want negatives you could just negate it manually. (by multiplying it by -1)
The actual variable randNumis what holds the random value you are interested in.
The trick is to get the remainder (the modulus) after dividing the seed by the upper range. The remainder will always be smaller than the divisor which in this case is 100. Simple maths tells you that you cant have a remainder greater than the divisor. So if you divide by 10 you cant have a remainder greater than 10. It is this simple law that gets us our random number between 0 and 100 in this case.
The console.writeline simply outputs it to the screen.
The console.readline simply pauses the program so you can see it.
This is a very simple piece of code to generate random numbers. If you ran this program at the exact same intervil every day (but you would have to do it at the same hour, minute, second and milisecond) for more than 1 day you would begin to generate the same set of numbers again and again each additional day. This is because it is tied to the time. That is the resolution of the generator. So if you know the code of this program, and the time it is run at, you can predict the number generated, but it wont be easy. That is why I used miliseconds. Use seconds or minutes only to see what I mean. So you could write a table showing when 1 goes in, 0 comes out, when 2 goes in 0 comes out and so on. You could then predict the output for every second, and the range of numbers generated. The more you increase the resolution (by increasing the numbers that change) the harder it is and the longer it takes to get a predictable pattern. This method is good enough for most peoples use.
That is the old school way of doing random number generation for basic games. It needed to be fast, and simple. It is. This also highlights exactly why, random numbers genaerators are not really random but psudo random.
I hope this is a reasonable answer to your question.