R has some tools for memory profiling, like Rprofmem(), Rprof() with option \"memory.profiling=TRUE\" and tracemem(). Th
Check out profr -- it seems like exactly what you're looking for.
profvis looks like the the solution to this question.
It generates an interactive .html file (using htmlwidgets) showing the profiling of your code.
The introduction vignette is a good guide on its capability.
Taking directly from the introduction, you would use it like this:
devtools::install_github("rstudio/profvis")
library(profvis)
# Generate data
times <- 4e5
cols <- 150
data <- as.data.frame(x = matrix(rnorm(times * cols, mean = 5), ncol = cols))
data <- cbind(id = paste0("g", seq_len(times)), data)
profvis({
data1 <- data # Store in another variable for this run
# Get column means
means <- apply(data1[, names(data1) != "id"], 2, mean)
# Subtract mean from each column
for (i in seq_along(means)) {
data1[, names(data1) != "id"][, i] <- data1[, names(data1) != "id"][, i] - means[i]
}
}, height = "400px")
Which gives