Given a list
a = [0,1,2,3,4,5,6,7,8,9]
how can I get
b = [0,9,1,8,2,7,3,6,4,5]
That is, produce a new lis
A very nice one-liner in Python 2.7:
results = list(sum(zip(a, reversed(a))[:len(a)/2], ()))
>>>> [0, 9, 1, 8, 2, 7, 3, 6, 4, 5]
First you zip the list with its reverse, take half that list, sum the tuples to form one tuple, and then convert to list.
In Python 3, zip returns a generator, so you have have to use islice from itertools:
from itertools import islice
results = list(sum(islice(zip(a, reversed(a)),0,int(len(a)/2)),()))
Edit: It appears this only works perfectly for even-list lengths - odd-list lengths will omit the middle element :( A small correction for int(len(a)/2) to int(len(a)/2) + 1 will give you a duplicate middle value, so be warned.
The basic principle behind your question is a so-called roundrobin algorithm. The itertools-documentation-page contains a possible implementation of it:
from itertools import cycle, islice
def roundrobin(*iterables):
"""This function is taken from the python documentation!
roundrobin('ABC', 'D', 'EF') --> A D E B F C
Recipe credited to George Sakkis"""
pending = len(iterables)
nexts = cycle(iter(it).__next__ for it in iterables) # next instead of __next__ for py2
while pending:
try:
for next in nexts:
yield next()
except StopIteration:
pending -= 1
nexts = cycle(islice(nexts, pending))
so all you have to do is split your list into two sublists one starting from the left end and one from the right end:
import math
mid = math.ceil(len(a)/2) # Just so that the next line doesn't need to calculate it twice
list(roundrobin(a[:mid], a[:mid-1:-1]))
# Gives you the desired result: [0, 9, 1, 8, 2, 7, 3, 6, 4, 5]
alternatively you could create a longer list (containing alternating items from sequence going from left to right and the items of the complete sequence going right to left) and only take the relevant elements:
list(roundrobin(a, reversed(a)))[:len(a)]
or using it as explicit generator with next:
rr = roundrobin(a, reversed(a))
[next(rr) for _ in range(len(a))]
or the speedy variant suggested by @Tadhg McDonald-Jensen (thank you!):
list(islice(roundrobin(a,reversed(a)),len(a)))
You can just pop back and forth:
b = [a.pop(-1 if i%2 else 0) for i in range(len(a))]
Note: This destroys the original list, a.
Use the right toolz.
from toolz import interleave, take
b = list(take(len(a), interleave((a, reversed(a)))))
First, I tried something similar to Raymond Hettinger's solution with itertools (Python 3).
from itertools import chain, islice
interleaved = chain.from_iterable(zip(a, reversed(a)))
b = list(islice(interleaved, len(a)))
I would do something like this
a = [0,1,2,3,4,5,6,7,8,9]
b = []
i = 0
j = len(a) - 1
mid = (i + j) / 2
while i <= j:
if i == mid and len(a) % 2 == 1:
b.append(a[i])
break
b.extend([a[i], a[j]])
i = i + 1
j = j - 1
print b
Not sure, whether this can be written more compactly, but it is efficient as it only uses iterators / generators
a = [0,1,2,3,4,5,6,7,8,9]
iter1 = iter(a)
iter2 = reversed(a)
b = [item for n, item in enumerate(
next(iter) for _ in a for iter in (iter1, iter2)
) if n < len(a)]