I am currently using the below code to import 6,000 csv files (with headers) and export them into a single csv file (with a single header row).
#import csv f
Are you required to do this in Python? If you are open to doing this entirely in shell, all you'd need to do is first cat
the header row from a randomly selected input .csv file into merged.csv
before running your one-liner:
cat a-randomly-selected-csv-file.csv | head -n1 > merged.csv
for f in *.csv; do cat "`pwd`/$f" | tail -n +2 >> merged.csv; done
You don't need pandas for this, just the simple csv
module would work fine.
import csv
df_out_filename = 'df_out.csv'
write_headers = True
with open(df_out_filename, 'wb') as fout:
writer = csv.writer(fout)
for filename in allFiles:
with open(filename) as fin:
reader = csv.reader(fin)
headers = reader.next()
if write_headers:
write_headers = False # Only write headers once.
writer.writerow(headers)
writer.writerows(reader) # Write all remaining rows.
If you don't need the CSV in memory, just copying from input to output, it'll be a lot cheaper to avoid parsing at all, and copy without building up in memory:
import shutil
import glob
#import csv files from folder
path = r'data/US/market/merged_data'
allFiles = glob.glob(path + "/*.csv")
allFiles.sort() # glob lacks reliable ordering, so impose your own if output order matters
with open('someoutputfile.csv', 'wb') as outfile:
for i, fname in enumerate(allFiles):
with open(fname, 'rb') as infile:
if i != 0:
infile.readline() # Throw away header on all but first file
# Block copy rest of file from input to output without parsing
shutil.copyfileobj(infile, outfile)
print(fname + " has been imported.")
That's it; shutil.copyfileobj handles efficiently copying the data, dramatically reducing the Python level work to parse and reserialize.
This assumes all the CSV files have the same format, encoding, line endings, etc., and the header doesn't contain embedded newlines, but if that's the case, it's a lot faster than the alternatives.
Here's a simpler approach - you can use pandas (though I am not sure how it will help with RAM usage)-
import pandas as pd
import glob
path =r'data/US/market/merged_data'
allFiles = glob.glob(path + "/*.csv")
stockstats_data = pd.DataFrame()
list_ = []
for file_ in allFiles:
df = pd.read_csv(file_)
stockstats_data = pd.concat((df, stockstats_data), axis=0)