Given a target sum and a set of integers, find the closest subset of numbers that add to that target

后端 未结 3 1112
南方客
南方客 2020-12-13 20:31

I have a set of integers M and a target sum k. I want to find the subset of M that when added together is the closest to k without going over.

For example:



        
相关标签:
3条回答
  • 2020-12-13 20:51

    If the target sum k is not too large, look at http://en.wikipedia.org/wiki/Subset_sum_problem#Pseudo-polynomial_time_dynamic_programming_solution - you can use this to create a bitmap which tells you which numbers can be produced using your subset. Then just pick the closest possible number to k in the bitmap.

    0 讨论(0)
  • 2020-12-13 20:58

    Split the problem into 4 parts:

    • Sum containing exactly 1 element

      Simply loop through and find the highest value not larger than the target.

    • Sum containing exactly 2 elements

      Use a double for-loop to find the largest sum not larger than the target.

    • Sum containing exactly 3 elements (similar to 3SUM)

      Sort the elements

      Use a double for-loop and do a binary search for the target minus the two values, looking for smaller values to find the largest sum not larger than the target.

    • Sum containing exactly 4 elements

      Sort the elements (already done)

      Use a double for-loop to generate all sums of 2 elements.

      Now, for each such sum, do a binary search on the sums for the target, looking for smaller values until we find one that doesn't contain either value which this sum is made up of.

      See this for code using this approach for a similar problem (the exact sum).

    Average case running time (?) = O(n + n^2 + n^2 log n + n^2 log n) = O(n^2 log n).

    Determining the running time of the last problem is somewhat difficult, it may be as bad as O(n^4 log n) in the worst case, as you may end up looking through most of them before you find one that fits, but this should rarely happen, and, within the same run, some should take less time, thus the overall running time may be less.

    0 讨论(0)
  • 2020-12-13 21:04

    Since you have a limit on the number of items that you can pick, you can do it with a reasonably straightforward algorithm.

    The algorithm produces the possible sums in "generations". Each element of a generation consists of a number representing the sum, and a N-tuple of indexes in M that were used to build that sum.

    Generation zero is empty; generation X+1 is produced by walking the generation X, and adding the elements of M to each value of that generation, and recording their sum for the next generation X+1.

    Before computing the sum, check its N-tuple for the presence of the index of the number that you are about to add. If it's there, skip the number. Next, check the sum: if it is already present among the X+1 sums, ignore it; otherwise, record the new sum, along with the new N-tuple of indexes (append the index of the number that you added to the N-tuple from the generation X).

    Here is how this would work for your inputs:

    Generation 0: empty

    Generation 1:

     1 - {0}
     3 - {1}
     5 - {2}
    14 - {4}
    

    Generation 2:

     4 - {0, 1}
     6 - {0, 2}
     8 - {1, 2}
    10 - {2, 3}
    15 - {0, 4}
    17 - {1, 4}
    19 - {2, 4}
    

    Generation 3:

     9 - {0, 1, 2}
    11 - {0, 2, 3}
    13 - {1, 2, 3}
    18 - {0, 1, 4}
    20 - {0, 2, 4}
    22 - {1, 2, 4}
    24 - {2, 3, 4}
    

    Generation 4:

    14 - {0, 1, 2, 3}
    23 - {0, 1, 2, 4}
    25 - {0, 2, 3, 4}
    27 - {1, 2, 3, 4}
    

    You can now search through the four generations for a number that is closest to your target number k.

    0 讨论(0)
提交回复
热议问题