Suppose you have a list of floating point numbers that are approximately multiples of a common quantity, for example
2.468, 3.700, 6.1699
w
I found this question looking for answers for mine in MathStackExchange (here and here).
I've only managed (yet) to measure the appeal of a fundamental frequency given a list of harmonic frequencies (following the sound/music nomenclature), which can be useful if you have a reduced number of options and is feasible to compute the appeal of each one and then choose the best fit.
C&P from my question in MSE (there the formatting is prettier):
The goal is to find the x that maximizes the appeal. Here is the (gcd_appeal) graph for your example [2.468, 3.700, 6.1699], where you find that the optimum GCD is at x = 1.2337899957639993
Edit: You may find handy this JAVA code to calculate the (fuzzy) divisibility (aka gcd_appeal) of a divisor relative to a list of dividends; you can use it to test which of your candidates makes the best divisor. The code looks ugly because I tried to optimize it for performance.
//returns the mean divisibility of dividend/divisor as a value in the range [0 and 1]
// 0 means no divisibility at all
// 1 means full divisibility
public double divisibility(double divisor, double... dividends) {
double n = dividends.length;
double factor = 2.0 / divisor;
double sum_x = -n;
double sum_y = 0.0;
double[] coord = new double[2];
for (double v : dividends) {
coordinates(v * factor, coord);
sum_x += coord[0];
sum_y += coord[1];
}
double err = 1.0 - Math.sqrt(sum_x * sum_x + sum_y * sum_y) / (2.0 * n);
//Might happen due to approximation error
return err >= 0.0 ? err : 0.0;
}
private void coordinates(double x, double[] out) {
//Bhaskara performant approximation to
//out[0] = Math.cos(Math.PI*x);
//out[1] = Math.sin(Math.PI*x);
long cos_int_part = (long) (x + 0.5);
long sin_int_part = (long) x;
double rem = x - cos_int_part;
if (cos_int_part != sin_int_part) {
double common_s = 4.0 * rem;
double cos_rem_s = common_s * rem - 1.0;
double sin_rem_s = cos_rem_s + common_s + 1.0;
out[0] = (((cos_int_part & 1L) * 8L - 4L) * cos_rem_s) / (cos_rem_s + 5.0);
out[1] = (((sin_int_part & 1L) * 8L - 4L) * sin_rem_s) / (sin_rem_s + 5.0);
} else {
double common_s = 4.0 * rem - 4.0;
double sin_rem_s = common_s * rem;
double cos_rem_s = sin_rem_s + common_s + 3.0;
double common_2 = ((cos_int_part & 1L) * 8L - 4L);
out[0] = (common_2 * cos_rem_s) / (cos_rem_s + 5.0);
out[1] = (common_2 * sin_rem_s) / (sin_rem_s + 5.0);
}
}
You can run Euclid's gcd algorithm with anything smaller then 0.01 (or a small number of your choice) being a pseudo 0. With your numbers:
3.700 = 1 * 2.468 + 1.232,
2.468 = 2 * 1.232 + 0.004.
So the pseudo gcd of the first two numbers is 1.232. Now you take the gcd of this with your last number:
6.1699 = 5 * 1.232 + 0.0099.
So 1.232 is the pseudo gcd, and the mutiples are 2,3,5. To improve this result, you may take the linear regression on the data points:
(2,2.468), (3,3.7), (5,6.1699).
The slope is the improved pseudo gcd.
Caveat: the first part of this is algorithm is numerically unstable - if you start with very dirty data, you are in trouble.