Compare two Spark dataframes

前端 未结 5 1019
再見小時候
再見小時候 2020-12-13 15:38

Spark dataframe 1 -:

+------+-------+---------+----+---+-------+
|city  |product|date     |sale|exp|wastage|
+------+-------+---------+----+---+-------+
|cit         


        
相关标签:
5条回答
  • 2020-12-13 16:13

    Check out MegaSparkDiff its an open source project on GitHub that helps compare dataframes .. the project is not yet published in maven central but you can look at the SparkCompare scala class that compares 2 dataframes

    the below code snippet will give you 2 dataframes one has rows inLeftButNotInRight and another one having InRightButNotInLeft.

    if you do a JOIN between both then you can apply some logic to identify the missing primary keys (where possible) and then those keys would constitute the deleted records.

    We are working on adding the use case that you are looking for in the project. https://github.com/FINRAOS/MegaSparkDiff

    https://github.com/FINRAOS/MegaSparkDiff/blob/master/src/main/scala/org/finra/msd/sparkcompare/SparkCompare.scala

    private def compareSchemaDataFrames(left: DataFrame , leftViewName: String
                                  , right: DataFrame , rightViewName: String) :Pair[DataFrame, DataFrame] = {
        //make sure that column names match in both dataFrames
        if (!left.columns.sameElements(right.columns))
          {
            println("column names were different")
            throw new Exception("Column Names Did Not Match")
          }
    
        val leftCols = left.columns.mkString(",")
        val rightCols = right.columns.mkString(",")
    
        //group by all columns in both data frames
        val groupedLeft = left.sqlContext.sql("select " + leftCols + " , count(*) as recordRepeatCount from " +  leftViewName + " group by " + leftCols )
        val groupedRight = left.sqlContext.sql("select " + rightCols + " , count(*) as recordRepeatCount from " +  rightViewName + " group by " + rightCols )
    
        //do the except/subtract command
        val inLnotinR = groupedLeft.except(groupedRight).toDF()
        val inRnotinL = groupedRight.except(groupedLeft).toDF()
    
        return new ImmutablePair[DataFrame, DataFrame](inLnotinR, inRnotinL)
      }
    
    0 讨论(0)
  • 2020-12-13 16:14

    I am not sure about finding the deleted and modified records but you can use except function to get the difference

    df2.except(df1)
    

    This returns the rows that has been added or modified in dataframe2 or record with changes. Output:

    +------+-------+---------+----+---+-------+
    |  city|product|     date|sale|exp|wastage|
    +------+-------+---------+----+---+-------+
    |city 3| prod 4|9/18/2017| 230|431|    169|
    |city 1| prod 4|9/27/2017| 350| 90|    190|
    |city 1| prod 3|9/9/2017 | 230|430|    160|
    +------+-------+---------+----+---+-------+
    

    You can also try with join and filter to get the changed and unchanged data as

    df1.join(df2, Seq("city","product", "date"), "left").show(false)
    df1.join(df2, Seq("city","product", "date"), "right").show(false)
    

    Hope this helps!

    0 讨论(0)
  • 2020-12-13 16:28

    A scalable and easy way is to diff the two DataFrames with spark-extension:

    import uk.co.gresearch.spark.diff._
    
    df1.diff(df2, "city", "product", "date").show
    
    +----+------+-------+----------+---------+----------+--------+---------+------------+-------------+
    |diff|  city|product|      date|left_sale|right_sale|left_exp|right_exp|left_wastage|right_wastage|
    +----+------+-------+----------+---------+----------+--------+---------+------------+-------------+
    |   N|city 1|prod 2 |2017-08-25|       50|        50|     687|      687|         201|          201|
    |   C|city 1|prod 3 |2017-09-09|      236|       230|     431|      430|         169|          160|
    |   I|city 3|prod 4 |2017-09-18|     null|       230|    null|      431|        null|          169|
    |   N|city 3|prod 3 |2017-09-08|      236|       236|     431|      431|         169|          169|
    |   D|city 2|prod 1 |2017-09-28|      358|      null|     975|     null|         193|         null|
    |   I|city 1|prod 4 |2017-09-27|     null|       350|    null|       90|        null|          190|
    |   N|city 1|prod 1 |2017-09-29|      358|       358|     975|      975|         193|          193|
    |   N|city 2|prod 2 |2017-08-24|       50|        50|     687|      687|         201|          201|
    +----+------+-------+----------+---------+----------+--------+---------+------------+-------------+
    

    It identifies Inserted, Changed, Deleted and uN-changed rows.

    0 讨论(0)
  • 2020-12-13 16:33

    Using Spark different join types seems to be the key to computing Deletions, Additions, and Updates on rows.

    This question illustrates the different types of joins depending on what you are trying to achieve: What are the various join types in Spark?

    0 讨论(0)
  • 2020-12-13 16:35

    see below the utility function I used to compare two dataframes using the following criteria

    1. Column length
    2. Record count
    3. Column by column comparing for all records

    Task three is done by using a hash of concatenation of all columns in a record.

    def verifyMatchAndSaveSignatureDifferences(oldDF: DataFrame, newDF: DataFrame, pkColumn: String) : Long = {
      assert(oldDF.columns.length == newDF.columns.length, s"column lengths don't match")
      assert(oldDF.count == newDF.count, s"record count don't match")
    
      def createHashColumn(df: DataFrame) : Column = {
         val colArr = df.columns
         md5(concat_ws("", (colArr.map(col(_))) : _*))
      }
    
      val newSigDF = newDF.select(col(pkColumn), createHashColumn(newDF).as("signature_new"))
      val oldSigDF = oldDF.select(col(pkColumn), createHashColumn(oldDF).as("signature"))
    
      val joinDF = newSigDF.join(oldSigDF, newSigDF("pkColumn") === oldSigDF("pkColumn")).where($"signature" !== $"signature_new").cache
    
      val diff = joinDF.count
      //write out any recorsd that don't match
      if (diff > 0)
         joinDF.write.saveAsTable("signature_table")
    
      joinDF.unpersist()
    
      diff
    }
    

    If the method returns 0, then both dataframes are exactly the same in everything else, a table named signature_table in default schema of hive will contains all records that differ in both.

    Hope this helps.

    0 讨论(0)
提交回复
热议问题