Given a phone keypad as shown below:
1 2 3
4 5 6
7 8 9
0
How many different 10-digit numbers can be formed starting from 1? The constrain
I implemented both brute force and dynamic programming models
import queue
def chess_numbers_bf(start, length):
if length <= 0:
return 0
phone = [[7, 5], [6, 8], [3, 7], [9, 2, 8], [], [6, 9, 0], [1, 5], [0, 2], [3, 1], [5, 3]]
total = 0
q = queue.Queue()
q.put((start, 1))
while not q.empty():
front = q.get()
val = front[0]
len_ = front[1]
if len_ < length:
for elm in phone[val]:
q.put((elm, len_ + 1))
else:
total += 1
return total
def chess_numbers_dp(start, length):
if length <= 0:
return 0
phone = [[7, 5], [6, 8], [3, 7], [9, 2, 8], [], [6, 9, 0], [1, 5], [0, 2], [3, 1], [5, 3]]
memory = {}
def __chess_numbers_dp(s, l):
if (s, l) in memory:
return memory[(s, l)]
elif l == length - 1:
memory[(s, l)] = 1
return 1
else:
total_n_ways = 0
for number in phone[s]:
total_n_ways += __chess_numbers_dp(number, l+1)
memory[(s, l)] = total_n_ways
return total_n_ways
return __chess_numbers_dp(start, 0)
# bf
for i in range(0, 10):
print(i, chess_numbers_bf(3, i))
print('\n')
for i in range(0, 10):
print(i, chess_numbers_bf(9, i))
print('\n')
# dp
for i in range(0, 10):
print(i, chess_numbers_dp(3, i))
print('\n')
# dp
for i in range(0, 10):
print(i, chess_numbers_dp(9, i))
print('\n')
This can be done in O(log N). Consider the keypad and the possible moves on it as a graph G(V, E) where vertices are the available digits and edges say which digits can follow which. Now for each output position i we can form a vector Paths(i) containing the number of different paths each vertex can be reached in. Now it's pretty easy to see that for a given position i and digit v, the possible paths that it can be reached through is the sum of the different paths that possible preceding digits could be reached through, or Paths(i)[v] = sum(Paths(i-1)[v2] * (1 if (v,v2) in E else 0) for v2 in V ). Now, this is taking the sum of each position the preceding vector times a corresponding position in a column of the adjacency matrix. So we can simplify this as Paths(i) = Paths(i-1) · A, where A is the adjacency matrix of the graph. Getting rid of the recursion and taking advantage of associativity of matrix multiplication, this becomes Paths(i) = Paths(1) · A^(i-1). We know Paths(1): we have only one path, to the digit 1.
The total number of paths for an n digit number is the sum of the paths for each digit, so the final algorithm becomes: TotalPaths(n) = sum( [1,0,0,0,0,0,0,0,0,0] · A^(n-1) )
The exponentiation can be calculated via squaring in O(log(n)) time, given constant time multiplies, otherwise O(M(n) * log(n)) where M(n) is the complexity of your favorite arbitrary precision multiplication algorithm for n digit numbers.
Run time constant time solution:
#include <iostream>
constexpr int notValid(int x, int y) {
return !(( 1 == x && 3 == y ) || //zero on bottom.
( 0 <= x && 3 > x && //1-9
0 <= y && 3 > y ));
}
class Knight {
template<unsigned N > constexpr int move(int x, int y) {
return notValid(x,y)? 0 : jump<N-1>(x,y);
}
template<unsigned N> constexpr int jump( int x, int y ) {
return move<N>(x+1, y-2) +
move<N>(x-1, y-2) +
move<N>(x+1, y+2) +
move<N>(x-1, y+2) +
move<N>(x+2, y+1) +
move<N>(x-2, y+1) +
move<N>(x+2, y-1) +
move<N>(x-2, y-1);
}
public:
template<unsigned N> constexpr int count() {
return move<N-1>(0,1) + move<N-1>(0,2) +
move<N-1>(1,0) + move<N-1>(1,1) + move<N-1>(1,2) +
move<N-1>(2,0) + move<N-1>(2,1) + move<N-1>(2,2);
}
};
template<> constexpr int Knight::move<0>(int x, int y) { return notValid(x,y)? 0 : 1; }
template<> constexpr int Knight::count<0>() { return 0; } //terminal cases.
template<> constexpr int Knight::count<1>() { return 8; }
int main(int argc, char* argv[]) {
static_assert( ( 16 == Knight().count<2>() ), "Fail on test with 2 lenght" ); // prof of performance
static_assert( ( 35 == Knight().count<3>() ), "Fail on test with 3 lenght" );
std::cout<< "Number of valid Knight phones numbers:" << Knight().count<10>() << std::endl;
return 0;
}
I decided to tackle this problem and make it as extensible as I can. This solution allows you to:
Define your own board (phone pad, chess board, etc.)
Define your own chess piece (Knight, Rook, Bishop, etc.); you will have to write the concrete class and generate it from the factory.
Retrieve several pieces of information through some useful utility methods.
The classes are as follows:
PadNumber: Class defining a button on the phone pad. Could be renamed to 'Square' to represent a board square.
ChessPiece: Abstract class that defines fields for all chess pieces.
Movement: Interface that defines movement methods and allows for factory generation of pieces.
PieceFactory: Factory class to generate Chess pieces.
Knight: Concrete class that inherits from ChessPiece and implements Movement
PhoneChess: Entrance class.
Driver: Driver code.
OK, here's the code :)
package PhoneChess;
import java.awt.Point;
public class PadNumber {
private String number = "";
private Point coordinates = null;
public PadNumber(String number, Point coordinates)
{
if(number != null && number.isEmpty()==false)
this.number = number;
else
throw new IllegalArgumentException("Input cannot be null or empty.");
if(coordinates == null || coordinates.x < 0 || coordinates.y < 0)
throw new IllegalArgumentException();
else
this.coordinates = coordinates;
}
public String getNumber()
{
return this.number;
}
public Integer getNumberAsNumber()
{
return Integer.parseInt(this.number);
}
public Point getCoordinates()
{
return this.coordinates;
}
public int getX()
{
return this.coordinates.x;
}
public int getY()
{
return this.coordinates.y;
}
}
ChessPiece
package PhoneChess;
import java.util.HashMap;
import java.util.List;
public abstract class ChessPiece implements Movement {
protected String name = "";
protected HashMap<PadNumber, List<PadNumber>> moves = null;
protected Integer fullNumbers = 0;
protected int[] movesFrom = null;
protected PadNumber[][] thePad = null;
}
Movement Interface:
package PhoneChess;
import java.util.List;
public interface Movement
{
public Integer findNumbers(PadNumber start, Integer digits);
public abstract boolean canMove(PadNumber from, PadNumber to);
public List<PadNumber> allowedMoves(PadNumber from);
public Integer countAllowedMoves(PadNumber from);
}
PieceFactory
package PhoneChess;
public class PieceFactory
{
public ChessPiece getPiece(String piece, PadNumber[][] thePad)
{
if(thePad == null || thePad.length == 0 || thePad[0].length == 0)
throw new IllegalArgumentException("Invalid pad");
if(piece == null)
throw new IllegalArgumentException("Invalid chess piece");
if(piece.equalsIgnoreCase("Knight"))
return new Knight("Knight", thePad);
else
return null;
}
}
Knight class
package PhoneChess;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
public final class Knight extends ChessPiece implements Movement {
/**Knight movements
* One horizontal, followed by two vertical
* Or
* One vertical, followed by two horizontal
* @param name
*/
public Knight(String name, PadNumber[][] thePad)
{
if(name == null || name.isEmpty() == true)
throw new IllegalArgumentException("Name cannot be null or empty");
this.name = name;
this.thePad = thePad;
this.moves = new HashMap<>();
}
private Integer fullNumbers = null;
@Override
public Integer findNumbers(PadNumber start, Integer digits)
{
if(start == null || "*".equals(start.getNumber()) || "#".equals(start.getNumber()) ) { throw new IllegalArgumentException("Invalid start point"); }
if(start.getNumberAsNumber() == 5) { return 0; } //Consider adding an 'allowSpecialChars' condition
if(digits == 1) { return 1; };
//Init
this.movesFrom = new int[thePad.length * thePad[0].length];
for(int i = 0; i < this.movesFrom.length; i++)
this.movesFrom[i] = -1;
fullNumbers = 0;
findNumbers(start, digits, 1);
return fullNumbers;
}
private void findNumbers(PadNumber start, Integer digits, Integer currentDigits)
{
//Base condition
if(currentDigits == digits)
{
//Reset
currentDigits = 1;
fullNumbers++;
return;
}
if(!this.moves.containsKey(start))
allowedMoves(start);
List<PadNumber> options = this.moves.get(start);
if(options != null)
{
currentDigits++; //More digits to be got
for(PadNumber option : options)
findNumbers(option, digits, currentDigits);
}
}
@Override
public boolean canMove(PadNumber from, PadNumber to)
{
//Is the moves list available?
if(!this.moves.containsKey(from.getNumber()))
{
//No? Process.
allowedMoves(from);
}
if(this.moves.get(from) != null)
{
for(PadNumber option : this.moves.get(from))
{
if(option.getNumber().equals(to.getNumber()))
return true;
}
}
return false;
}
/***
* Overriden method that defines each Piece's movement restrictions.
*/
@Override
public List<PadNumber> allowedMoves(PadNumber from)
{
//First encounter
if(this.moves == null)
this.moves = new HashMap<>();
if(this.moves.containsKey(from))
return this.moves.get(from);
else
{
List<PadNumber> found = new ArrayList<>();
int row = from.getY();//rows
int col = from.getX();//columns
//Cases:
//1. One horizontal move each way followed by two vertical moves each way
if(col-1 >= 0 && row-2 >= 0)//valid
{
if(thePad[row-2][col-1].getNumber().equals("*") == false &&
thePad[row-2][col-1].getNumber().equals("#") == false)
{
found.add(thePad[row-2][col-1]);
this.movesFrom[from.getNumberAsNumber()] = this.movesFrom[from.getNumberAsNumber()] + 1;
}
}
if(col-1 >= 0 && row+2 < thePad.length)//valid
{
if(thePad[row+2][col-1].getNumber().equals("*") == false &&
thePad[row+2][col-1].getNumber().equals("#") == false)
{
found.add(thePad[row+2][col-1]);
this.movesFrom[from.getNumberAsNumber()] = this.movesFrom[from.getNumberAsNumber()] + 1;
}
}
if(col+1 < thePad[0].length && row+2 < thePad.length)//valid
{
if(thePad[row+2][col+1].getNumber().equals("*") == false &&
thePad[row+2][col+1].getNumber().equals("#") == false)
{
found.add(thePad[row+2][col+1]);
this.movesFrom[from.getNumberAsNumber()] = this.movesFrom[from.getNumberAsNumber()] + 1;
}
}
if(col+1 < thePad[0].length && row-2 >= 0)//valid
{
if(thePad[row-2][col+1].getNumber().equals("*") == false &&
thePad[row-2][col+1].getNumber().equals("#") == false)
found.add(thePad[row-2][col+1]);
}
//Case 2. One vertical move each way follow by two horizontal moves each way
if(col-2 >= 0 && row-1 >= 0)
{
if(thePad[row-1][col-2].getNumber().equals("*") == false &&
thePad[row-1][col-2].getNumber().equals("#") == false)
found.add(thePad[row-1][col-2]);
}
if(col-2 >= 0 && row+1 < thePad.length)
{
if(thePad[row+1][col-2].getNumber().equals("*") == false &&
thePad[row+1][col-2].getNumber().equals("#") == false)
found.add(thePad[row+1][col-2]);
}
if(col+2 < thePad[0].length && row-1 >= 0)
{
if(thePad[row-1][col+2].getNumber().equals("*") == false &&
thePad[row-1][col+2].getNumber().equals("#") == false)
found.add(thePad[row-1][col+2]);
}
if(col+2 < thePad[0].length && row+1 < thePad.length)
{
if(thePad[row+1][col+2].getNumber().equals("*") == false &&
thePad[row+1][col+2].getNumber().equals("#") == false)
found.add(thePad[row+1][col+2]);
}
if(found.size() > 0)
{
this.moves.put(from, found);
this.movesFrom[from.getNumberAsNumber()] = found.size();
}
else
{
this.moves.put(from, null); //for example the Knight cannot move from 5 to anywhere
this.movesFrom[from.getNumberAsNumber()] = 0;
}
}
return this.moves.get(from);
}
@Override
public Integer countAllowedMoves(PadNumber from)
{
int start = from.getNumberAsNumber();
if(movesFrom[start] != -1)
return movesFrom[start];
else
{
movesFrom[start] = allowedMoves(from).size();
}
return movesFrom[start];
}
@Override
public String toString()
{
return this.name;
}
}
PhoneChess entrant class
package PhoneChess;
public final class PhoneChess
{
private ChessPiece thePiece = null;
private PieceFactory factory = null;
public ChessPiece ThePiece()
{
return this.thePiece;
}
public PhoneChess(PadNumber[][] thePad, String piece)
{
if(thePad == null || thePad.length == 0 || thePad[0].length == 0)
throw new IllegalArgumentException("Invalid pad");
if(piece == null)
throw new IllegalArgumentException("Invalid chess piece");
this.factory = new PieceFactory();
this.thePiece = this.factory.getPiece(piece, thePad);
}
public Integer findPossibleDigits(PadNumber start, Integer digits)
{
if(digits <= 0)
throw new IllegalArgumentException("Digits cannot be less than or equal to zero");
return thePiece.findNumbers(start, digits);
}
public boolean isValidMove(PadNumber from, PadNumber to)
{
return this.thePiece.canMove(from, to);
}
}
Driver Code:
public static void main(String[] args) {
PadNumber[][] thePad = new PadNumber[4][3];
thePad[0][0] = new PadNumber("1", new Point(0,0));
thePad[0][1] = new PadNumber("2", new Point(1,0));
thePad[0][2] = new PadNumber("3",new Point(2,0));
thePad[1][0] = new PadNumber("4",new Point(0,1));
thePad[1][1] = new PadNumber("5",new Point(1,1));
thePad[1][2] = new PadNumber("6", new Point(2,1));
thePad[2][0] = new PadNumber("7", new Point(0,2));
thePad[2][1] = new PadNumber("8", new Point(1,2));
thePad[2][2] = new PadNumber("9", new Point(2,2));
thePad[3][0] = new PadNumber("*", new Point(0,3));
thePad[3][1] = new PadNumber("0", new Point(1,3));
thePad[3][2] = new PadNumber("#", new Point(2,3));
PhoneChess phoneChess = new PhoneChess(thePad, "Knight");
System.out.println(phoneChess.findPossibleDigits(thePad[0][1],4));
}
}
Recursive function in Java:
public static int countPhoneNumbers (int n, int r, int c) {
if (outOfBounds(r,c)) {
return 0;
} else {
char button = buttons[r][c];
if (button == '.') {
// visited
return 0;
} else {
buttons[r][c] = '.'; // record this position so don't revisit.
// Count all possible phone numbers with one less digit starting
int result=0;
result = countPhoneNumbers(n-1,r-2,c-1)
+ countPhoneNumbers(n-1,r-2,c+1)
+ countPhoneNumbers(n-1,r+2,c-1)
+ countPhoneNumbers(n-1,r+2,c+1)
+ countPhoneNumbers(n-1,r-1,c-2)
+ countPhoneNumbers(n-1,r-1,c+2)
+ countPhoneNumbers(n-1,r+1,c-2)
+ countPhoneNumbers(n-1,r+1,c+2);
}
buttons[r][c] = button; // Remove record from position.
return result;
}
}
}
//Both the iterative and recursive with memorize shows count as 1424 for 10 digit numbers starting with 1.
int[][] b = {{4,6},{6,8},{7,9},{4,8},{0,3,9},{},{1,7,0},{2,6},{1,3},{2,4}};
public int countIterative(int digit, int length) {
int[][] matrix = new int[length][10];
for(int dig =0; dig <=9; dig++){
matrix[0][dig] = 1;
}
for(int len = 1; len < length; len++){
for(int dig =0; dig <=9; dig++){
int sum = 0;
for(int i : b[dig]){
sum += matrix[len-1][i];
}
matrix[len][dig] = sum;
}
}
return matrix[length-1][digit];
}
public int count(int index, int length, int[][] matrix ){
int sum = 0;
if(matrix[length-1][index] > 0){
System.out.println("getting value from memoize:"+index + "length:"+ length);
return matrix[length-1][index];
}
if( length == 1){
return 1;
}
for(int i: b[index] ) {
sum += count(i, length-1,matrix);
}
matrix[length-1][index] = sum;
return sum;
}