In my multithreaded application and I see heavy lock contention in it, preventing good scalability across multiple cores. I have decided to use lock free programming to solv
in re. Suma's answer, Maurice Herlithy shows in The Art of Multiprocessor Programming that actually anything can be written without locks (see chapter 6). iirc, This essentially involves splitting tasks into processing node elements (like a function closure), and enqueuing each one. Threads will calculate the state by following all nodes from the latest cached one. Obviously this could, in worst case, result in sequential performance, but it does have important lockless properties, preventing scenarios where threads could get scheduled out for long peroids of time when they are holding locks. Herlithy also achieves theoretical wait-free performance, meaning that one thread will not end up waiting forever to win the atomic enqueue (this is a lot of complicated code).
A multi-threaded queue / stack is surprisingly hard (check the ABA problem). Other things may be very simple. Become accustomed to while(true) { atomicCAS until I swapped it } blocks; they are incredibly powerful. An intuition for what's correct with CAS can help development, though you should use good testing and maybe more powerful tools (maybe SKETCH, upcoming MIT Kendo, or spin?) to check correctness if you can reduce it to a simple structure.
Please post more about your problem. It's difficult to give a good answer without details.
edit immutibility is nice but it's applicability is limited, if I'm understanding it right. It doesn't really overcome write-after-read hazards; consider two threads executing "mem = NewNode(mem)"; they could both read mem, then both write it; not the correct for a classic increment function. Also, it's probably slow due to heap allocation (which has to be synchronized across threads).
If you read several implementations and papers regarding the subject, you'll notice there is the following common theme:
1) Shared state objects are lisp/clojure style inmutable: that is, all write operations are implemented copying the existing state in a new object, make modifications to the new object and then try to update the shared state (obtained from a aligned pointer that can be updated with the CAS primitive). In other words, you NEVER EVER modify an existing object that might be read by more than the current thread. Inmutability can be optimized using Copy-on-Write semantics for big, complex objects, but thats another tree of nuts
2) you clearly specify what allowed transitions between current and next state are valid: Then validating that the algorithm is valid become orders of magnitude easier
3) Handle discarded references in hazard pointer lists per thread. After the reference objects are safe, reuse if possible
See another related post of mine where some code implemented with semaphores and mutexes is (partially) reimplemented in a lock-free style: Mutual exclusion and semaphores
As mentioned, it really depends on what type of structure you're talking about. For instance, you can write a limited lock-free queue, but not one that allows random access.
As sblundy pointed out, if all objects are immutable, read-only, you don't need to worry about locking, however, this means you may have to copy objects a lot. Copying usually involves malloc and malloc uses locking to synchronize memory allocations across threads, so immutable objects may buy you less than you think (malloc itself scales rather badly and malloc is slow; if you do a lot of malloc in a performance critical section, don't expect good performance).
When you only need to update simple variables (e.g. 32 or 64 bit int or pointers), perform simply addition or subtraction operations on them or just swap the values of two variables, most platforms offer "atomic operations" for that (further GCC offers these as well). Atomic is not the same as thread-safe. However, atomic makes sure, that if one thread writes a 64 bit value to a memory location for example and another thread reads from it, the reading one either gets the value before the write operation or after the write operation, but never a broken value in-between the write operation (e.g. one where the first 32 bit are already the new, the last 32 bit are still the old value! This can happen if you don't use atomic access on such a variable).
However, if you have a C struct with 3 values, that want to update, even if you update all three with atomic operations, these are three independent operations, thus a reader might see the struct with one value already being update and two not being updated. Here you will need a lock if you must assure, the reader either sees all values in the struct being either the old or the new values.
One way to make locks scale a lot better is using R/W locks. In many cases, updates to data are rather infrequent (write operations), but accessing the data is very frequent (reading the data), think of collections (hashtables, trees). In that case R/W locks will buy you a huge performance gain, as many threads can hold a read-lock at the same time (they won't block each other) and only if one thread wants a write lock, all other threads are blocked for the time the update is performed.
The best way to avoid thread-issues is to not share any data across threads. If every thread deals most of the time with data no other thread has access to, you won't need locking for that data at all (also no atomic operations). So try to share as little data as possible between threads. Then you only need a fast way to move data between threads if you really have to (ITC, Inter Thread Communication). Depending on your operating system, platform and programming language (unfortunately you told us neither of these), various powerful methods for ITC might exist.
And finally, another trick to work with shared data but without any locking is to make sure threads don't access the same parts of the shared data. E.g. if two threads share an array, but one will only ever access even, the other one only odd indexes, you need no locking. Or if both share the same memory block and one only uses the upper half of it, the other one only the lower one, you need no locking. Though it's not said, that this will lead to good performance; especially not on multi-core CPUs. Write operations of one thread to this shared data (running one core) might force the cache to be flushed for another thread (running on another core) and these cache flushes are often the bottle neck for multithread applications running on modern multi-core CPUs.
Use an existing implementation, as this area of work is the realm of domain experts and PhDs (if you want it done right!)
For example there is a library of code here:
http://www.cl.cam.ac.uk/research/srg/netos/lock-free/
If you see lock contention, I would first try to use more granular locks on your data structures rather than completely lock-free algorithms.
For example, I currently work on multithreaded application, that has a custom messaging system (list of queues for each threads, the queue contains messages for thread to process) to pass information between threads. There is a global lock on this structure. In my case, I don't need speed so much, so it doesn't really matter. But if this lock would become a problem, it could be replaced by individual locks at each queue, for example. Then adding/removing element to/from the specific queue would didn't affect other queues. There still would be a global lock for adding new queue and such, but it wouldn't be so much contended.
Even a single multi-produces/consumer queue can be written with granular locking on each element, instead of having a global lock. This may also eliminate contention.