What exactly makes the JVM (in particular, Sun\'s implementation) slow to get running compared to other runtimes like CPython? My impression was that it mainly has to do wit
Just to note some solutions:
There are two mechanisms that allow to faster startup JVM. The first one, is the class data sharing mechanism, that is supported since Java 6 Update 21 (only with the HotSpot Client VM, and only with the serial garbage collector as far as I know)
To activate it you need to set -Xshare (on some implementations: -Xshareclasses ) JVM options.
To read more about the feature you may visit: Class data sharing
The second mechanism is a Java Quick Starter. It allows to preload classes during OS startup, see: Java Quick Starter for more details.
Here is what Wikipedia has to say on the issue (with some references).
It appears that most of the time is taken just loading data (classes) from disk (i.e. startup time is I/O bound).
Running a trivial Java app with the 1.6 (Java 6) client JVM seems instantaneous on my machine. Sun has attempted to tune the client JVM for faster startup (and the client JVM is the default), so if you don't need lots of extra jar files, then startup should be speedy.
It really depends on what you are doing during the start up. If you run Hello World application it takes 0.15 seconds on my machine.
However, Java is better suited to running as a client or a server/service which means the startup time isn't as important as the connection time (about 0.025 ms) or the round trip time response time (<< 0.001 ms).
There are a number of reasons:
jar
s to loadI'm not sure about the CLR, but I think it is often faster because it caches a native version of assemblies for next time (so it doesn't need to JIT). CPython starts faster because it is an interpreter, and IIRC, doesn't do JIT.
All VMs with a rich type system such as Java or CLR will not be instanteous when compared to less rich systems such as those found in C or C++. This is largely because a lot is happening in the VM, a lot of classes get initialized and are required by a running system. Snapshots of an initialized system do help but it still costs to load that image back into memory etc.
A simple hello world styled one liner class with a main still requires a lot to be loaded and initialized. Verifying the class requires a lot of dependency checking and validation all which cost time and many CPU instructions to be executed. On the other hand a C program will not do any of these and will amount of a few instructions and then invoke the printer function.