/**
* Returns a number between kLowerBound and kUpperBound
* e.g.: Wrap(-1, 0, 4); // Returns 4
* e.g.: Wrap(5, 0, 4); // Returns 0
*/
int Wrap(int con
An answer that has some symmetry and also makes it obvious that when kX is in range, it is returned unmodified.
int Wrap(int const kX, int const kLowerBound, int const kUpperBound)
{
int range_size = kUpperBound - kLowerBound + 1;
if (kX < kLowerBound)
return kX + range_size * ((kLowerBound - kX) / range_size + 1);
if (kX > kUpperBound)
return kX - range_size * ((kX - kUpperBound) / range_size + 1);
return kX;
}
Personally I've found solutions to these types of functions to be cleaner if range is exclusive and divisor is restricted to positive values.
int ifloordiv(int x, int y)
{
if (x > 0)
return x / y;
if (x < 0)
return (x + 1) / y - 1;
return 0
}
int iwrap(int x, int y)
{ return x - y * ifloordiv(x, y);
}
Integrated.
int iwrap(int x, int y)
{
if (x > 0)
return x % y;
if (x < 0)
return (x + 1) % y + y - 1;
return 0;
}
Same family. Why not?
int ireflect(int x, int y)
{
int z = iwrap(x, y*2);
if (z < y)
return z;
return y*2-1 - z;
}
int ibandy(int x, int y)
{
if (y != 1)
return ireflect(abs(x + x / (y - 1)), y);
return 0;
}
Ranged functionality can be implemented for all functions with,
// output is in the range [min, max).
int func2(int x, int min, int max)
{
// increment max for inclusive behavior.
assert(min < max);
return func(x - min, max - min) + min;
}
Actually, since -1 % 4 returns -1 on every system I've even been on, the simple mod solution doesn't work. I would try:
int range = kUpperBound - kLowerBound +1;
kx = ((kx - kLowerBound) % range) + range;
return (kx % range) + kLowerBound;
if kx is positive, you mod, add range, and mod back, undoing the add. If kx is negative, you mod, add range which makes it positive, then mod again, which doesn't do anything.
I would give an entry point to the most common case lowerBound=0, upperBound=N-1. And call this function in the general case. No mod computation is done where I is already in range. It assumes upper>=lower, or n>0.
int wrapN(int i,int n)
{
if (i<0) return (n-1)-(-1-i)%n; // -1-i is >=0
if (i>=n) return i%n;
return i; // In range, no mod
}
int wrapLU(int i,int lower,int upper)
{
return lower+wrapN(i-lower,1+upper-lower);
}
In the special case where the lower bound is zero, this code avoids division, modulus and multiplication. The upper bound does not have to be a power of two. This code is overly verbose and looks bloated, but compiles into 3 instructions: subtract, shift (by constant), and 'and'.
#include <climits> // CHAR_BIT
// -------------------------------------------------------------- allBits
// sign extend a signed integer into an unsigned mask:
// return all zero bits (+0) if arg is positive,
// or all one bits (-0) for negative arg
template <typename SNum>
static inline auto allBits (SNum arg) {
static constexpr auto argBits = CHAR_BIT * sizeof( arg);
static_assert( argBits < 256, "allBits() sign extension may fail");
static_assert( std::is_signed< SNum>::value, "SNum must be signed");
typedef typename std::make_unsigned< SNum>::type UNum;
// signed shift required, but need unsigned result
const UNum mask = UNum( arg >> (argBits - 1));
return mask;
}
// -------------------------------------------------------------- boolWrap
// wrap reset a counter without conditionals:
// return arg >= limit? 0 : arg
template <typename UNum>
static inline auto boolWrap (const UNum arg, const UNum limit) {
static_assert( ! std::is_signed< UNum>::value, "UNum assumed unsigned");
typedef typename std::make_signed< UNum>::type SNum;
const SNum negX = SNum( arg) - SNum( limit);
const auto signX = allBits( negX); // +0 or -0
return arg & signX;
}
// example usage:
for (int j= 0; j < 15; ++j) {
cout << j << boolWrap( j, 11);
}
Why not using Extension methods.
public static class IntExtensions
{
public static int Wrap(this int kX, int kLowerBound, int kUpperBound)
{
int range_size = kUpperBound - kLowerBound + 1;
if (kX < kLowerBound)
kX += range_size * ((kLowerBound - kX) / range_size + 1);
return kLowerBound + (kX - kLowerBound) % range_size;
}
}
Usage: currentInt = (++currentInt).Wrap(0, 2);