I encoded my categorical data using sklearn.OneHotEncoder
and fed them to a random forest classifier. Everything seems to work and I got my predicted output bac
Since version 0.20 of scikit-learn, the active_features_
attribute of the OneHotEncoder
class has been deprecated, so I suggest to rely on the categories_
attribute instead.
The below function can help you recover the original data from a matrix that has been one-hot encoded:
def reverse_one_hot(X, y, encoder):
reversed_data = [{} for _ in range(len(y))]
all_categories = list(itertools.chain(*encoder.categories_))
category_names = ['category_{}'.format(i+1) for i in range(len(encoder.categories_))]
category_lengths = [len(encoder.categories_[i]) for i in range(len(encoder.categories_))]
for row_index, feature_index in zip(*X.nonzero()):
category_value = all_categories[feature_index]
category_name = get_category_name(feature_index, category_names, category_lengths)
reversed_data[row_index][category_name] = category_value
reversed_data[row_index]['target'] = y[row_index]
return reversed_data
def get_category_name(index, names, lengths):
counter = 0
for i in range(len(lengths)):
counter += lengths[i]
if index < counter:
return names[i]
raise ValueError('The index is higher than the number of categorical values')
To test it, I have created a small data set that includes the ratings that users have given to users
data = [
{'user_id': 'John', 'item_id': 'The Matrix', 'rating': 5},
{'user_id': 'John', 'item_id': 'Titanic', 'rating': 1},
{'user_id': 'John', 'item_id': 'Forrest Gump', 'rating': 2},
{'user_id': 'John', 'item_id': 'Wall-E', 'rating': 2},
{'user_id': 'Lucy', 'item_id': 'The Matrix', 'rating': 5},
{'user_id': 'Lucy', 'item_id': 'Titanic', 'rating': 1},
{'user_id': 'Lucy', 'item_id': 'Die Hard', 'rating': 5},
{'user_id': 'Lucy', 'item_id': 'Forrest Gump', 'rating': 2},
{'user_id': 'Lucy', 'item_id': 'Wall-E', 'rating': 2},
{'user_id': 'Eric', 'item_id': 'The Matrix', 'rating': 2},
{'user_id': 'Eric', 'item_id': 'Die Hard', 'rating': 3},
{'user_id': 'Eric', 'item_id': 'Forrest Gump', 'rating': 5},
{'user_id': 'Eric', 'item_id': 'Wall-E', 'rating': 4},
{'user_id': 'Diane', 'item_id': 'The Matrix', 'rating': 4},
{'user_id': 'Diane', 'item_id': 'Titanic', 'rating': 3},
{'user_id': 'Diane', 'item_id': 'Die Hard', 'rating': 5},
{'user_id': 'Diane', 'item_id': 'Forrest Gump', 'rating': 3},
]
data_frame = pandas.DataFrame(data)
data_frame = data_frame[['user_id', 'item_id', 'rating']]
ratings = data_frame['rating']
data_frame.drop(columns=['rating'], inplace=True)
If we are building a prediction model, we have to remember to delete the dependent variable (in this case the rating) from the DataFrame
before we encode it.
ratings = data_frame['rating']
data_frame.drop(columns=['rating'], inplace=True)
Then we proceed to do the encoding
ohc = OneHotEncoder()
encoded_data = ohc.fit_transform(data_frame)
print(encoded_data)
Which results in:
(0, 2) 1.0
(0, 6) 1.0
(1, 2) 1.0
(1, 7) 1.0
(2, 2) 1.0
(2, 5) 1.0
(3, 2) 1.0
(3, 8) 1.0
(4, 3) 1.0
(4, 6) 1.0
(5, 3) 1.0
(5, 7) 1.0
(6, 3) 1.0
(6, 4) 1.0
(7, 3) 1.0
(7, 5) 1.0
(8, 3) 1.0
(8, 8) 1.0
(9, 1) 1.0
(9, 6) 1.0
(10, 1) 1.0
(10, 4) 1.0
(11, 1) 1.0
(11, 5) 1.0
(12, 1) 1.0
(12, 8) 1.0
(13, 0) 1.0
(13, 6) 1.0
(14, 0) 1.0
(14, 7) 1.0
(15, 0) 1.0
(15, 4) 1.0
(16, 0) 1.0
(16, 5) 1.0
After encoding the we can reverse using the reverse_one_hot
function we defined above, like this:
reverse_data = matrix_utils.reverse_one_hot(encoded_data, ratings, ohc)
print(pandas.DataFrame(reverse_data))
Which gives us:
category_1 category_2 target
0 John The Matrix 5
1 John Titanic 1
2 John Forrest Gump 2
3 John Wall-E 2
4 Lucy The Matrix 5
5 Lucy Titanic 1
6 Lucy Die Hard 5
7 Lucy Forrest Gump 2
8 Lucy Wall-E 2
9 Eric The Matrix 2
10 Eric Die Hard 3
11 Eric Forrest Gump 5
12 Eric Wall-E 4
13 Diane The Matrix 4
14 Diane Titanic 3
15 Diane Die Hard 5
16 Diane Forrest Gump 3
See https://stackoverflow.com/a/42874726/562769
import numpy as np
nb_classes = 6
data = [[2, 3, 4, 0]]
def indices_to_one_hot(data, nb_classes):
"""Convert an iterable of indices to one-hot encoded labels."""
targets = np.array(data).reshape(-1)
return np.eye(nb_classes)[targets]
def one_hot_to_indices(data):
indices = []
for el in data:
indices.append(list(el).index(1))
return indices
hot = indices_to_one_hot(orig_data, nb_classes)
indices = one_hot_to_indices(hot)
print(orig_data)
print(indices)
gives:
[[2, 3, 4, 0]]
[2, 3, 4, 0]