Selecting columns from pandas.HDFStore table

前端 未结 3 1726
遥遥无期
遥遥无期 2020-12-13 00:52

How can I retrieve specific columns from a pandas HDFStore? I regularly work with very large data sets that are too big to manipulate in memory. I would like to read in a

相关标签:
3条回答
  • 2020-12-13 01:35

    You can store the dataframe with an index of the columns as follows:

    import pandas as pd
    import numpy as np
    from pandas.io.pytables import Term
    
    index = pd.date_range('1/1/2000', periods=8)
    df = pd.DataFrame( np.random.randn(8,3), index=index, columns=list('ABC'))  
    
    store = pd.HDFStore('mydata.h5')
    store.append('df_cols', df, axes='columns')
    

    and then select as you might hope:

    In [8]: store.select('df_cols', [Term('columns', '=', 'A')])
    Out[8]: 
    2000-01-01    0.347644
    2000-01-02    0.477167
    2000-01-03    1.419741
    2000-01-04    0.641400
    2000-01-05   -1.313405
    2000-01-06   -0.137357
    2000-01-07   -1.208429
    2000-01-08   -0.539854
    

    Where:

    In [9]: df
    Out[9]: 
                       A         B         C
    2000-01-01  0.347644  0.895084 -1.457772
    2000-01-02  0.477167  0.464013 -1.974695
    2000-01-03  1.419741  0.470735 -0.309796
    2000-01-04  0.641400  0.838864 -0.112582
    2000-01-05 -1.313405 -0.678250 -0.306318
    2000-01-06 -0.137357 -0.723145  0.982987
    2000-01-07 -1.208429 -0.672240  1.331291
    2000-01-08 -0.539854 -0.184864 -1.056217
    

    .

    To me this isn't an ideal solution, as we can only indexing the DataFrame by one thing! Worryingly the docs seem to suggest you can only index a DataFrame by one thing, at least using axes:

    Pass the axes keyword with a list of dimension (currently must by exactly 1 less than the total dimensions of the object).

    I may be reading this incorrectly, in which case hopefully someone can prove me wrong!

    .

    Note: One way I have found to index a DataFrame by two things (index and columns), is to convert it to a Panel, which can then retrieve using two indices. However then we have to convert to the selected subpanel to a DataFrame each time items are retrieved... again, not ideal.

    0 讨论(0)
  • 2020-12-13 01:41

    From now on,U can use query expression instead Term construction. e.g: store.select('df', "index > Timestamp('20000105')")

    0 讨论(0)
  • 2020-12-13 01:49

    The way HDFStore records tables, the columns are stored by type as single numpy arrays. You always get back all of the columns, you can filter on them, so you will be returned for what you ask. In 0.10.0 you can pass a Term that involves columns.

    store.select('df', [ Term('index', '>', Timestamp('20010105')), 
                         Term('columns', '=', ['A','B']) ])
    

    or you can reindex afterwards

    df = store.select('df', [ Term('index', '>', Timestamp('20010105') ])
    df.reindex(columns = ['A','B'])
    

    The axes is not really the solution here (what you actually created was in effect storing a transposed frame). This parameter allows you to re-order the storage of axes to enable data alignment in different ways. For a dataframe it really doesn't mean much; for 3d or 4d structures, on-disk data alignment is crucial for really fast queries.

    0.10.1 will allow a more elegant solution, namely data columns, that is, you can elect certain columns to be represented as there own columns in the table store, so you really can select just them. Here is a taste what is coming.

     store.append('df', columns = ['A','B','C'])
     store.select('df', [ 'A > 0', Term('index', '>', Timestamp(2000105)) ])
    

    Another way to do go about this is to store separate tables in different nodes of the file, then you can select only what you need.

    In general, I recommend again really wide tables. hayden offers up the Panel solution, which might be a benefit for you now, as the actual data arangement should reflect how you want to query the data.

    0 讨论(0)
提交回复
热议问题