I have a list of p-values and I would like to calculate the adjust p-values for multiple comparisons for the FDR. In R, I can use:
pval <- read.csv(\"my_f
Here is an in-house function I use:
def correct_pvalues_for_multiple_testing(pvalues, correction_type = "Benjamini-Hochberg"):
"""
consistent with R - print correct_pvalues_for_multiple_testing([0.0, 0.01, 0.029, 0.03, 0.031, 0.05, 0.069, 0.07, 0.071, 0.09, 0.1])
"""
from numpy import array, empty
pvalues = array(pvalues)
n = float(pvalues.shape[0])
new_pvalues = empty(n)
if correction_type == "Bonferroni":
new_pvalues = n * pvalues
elif correction_type == "Bonferroni-Holm":
values = [ (pvalue, i) for i, pvalue in enumerate(pvalues) ]
values.sort()
for rank, vals in enumerate(values):
pvalue, i = vals
new_pvalues[i] = (n-rank) * pvalue
elif correction_type == "Benjamini-Hochberg":
values = [ (pvalue, i) for i, pvalue in enumerate(pvalues) ]
values.sort()
values.reverse()
new_values = []
for i, vals in enumerate(values):
rank = n - i
pvalue, index = vals
new_values.append((n/rank) * pvalue)
for i in xrange(0, int(n)-1):
if new_values[i] < new_values[i+1]:
new_values[i+1] = new_values[i]
for i, vals in enumerate(values):
pvalue, index = vals
new_pvalues[index] = new_values[i]
return new_pvalues
(I know this is not the answer... just trying to be helpful.) The BH code in R's p.adjust is just:
BH = {
i <- lp:1L # lp is the number of p-values
o <- order(p, decreasing = TRUE) # "o" will reverse sort the p-values
ro <- order(o)
pmin(1, cummin(n/i * p[o]))[ro] # n is also the number of p-values
}
If you wish to be sure of what you are getting from R, you can also indicate that you wish to use the function in the R package 'stats':
from rpy2.robjects.packages import importr
from rpy2.robjects.vectors import FloatVector
stats = importr('stats')
p_adjust = stats.p_adjust(FloatVector(pvalue_list), method = 'BH')
Using Python's numpy library, without calling out to R at all, here's a reasonably efficient implementation of the BH method:
import numpy as np
def p_adjust_bh(p):
"""Benjamini-Hochberg p-value correction for multiple hypothesis testing."""
p = np.asfarray(p)
by_descend = p.argsort()[::-1]
by_orig = by_descend.argsort()
steps = float(len(p)) / np.arange(len(p), 0, -1)
q = np.minimum(1, np.minimum.accumulate(steps * p[by_descend]))
return q[by_orig]
(Based on the R code BondedDust posted)
This question is a bit old, but there are multiple comparison corrections available in statsmodels for Python. We have
http://statsmodels.sourceforge.net/devel/generated/statsmodels.sandbox.stats.multicomp.multipletests.html#statsmodels.sandbox.stats.multicomp.multipletests
Old question, but here's a translation of the R FDR code in python (which is probably fairly inefficient):
def FDR(x):
"""
Assumes a list or numpy array x which contains p-values for multiple tests
Copied from p.adjust function from R
"""
o = [i[0] for i in sorted(enumerate(x), key=lambda v:v[1],reverse=True)]
ro = [i[0] for i in sorted(enumerate(o), key=lambda v:v[1])]
q = sum([1.0/i for i in xrange(1,len(x)+1)])
l = [q*len(x)/i*x[j] for i,j in zip(reversed(xrange(1,len(x)+1)),o)]
l = [l[k] if l[k] < 1.0 else 1.0 for k in ro]
return l