So given the following program:
Is the time complexity of this program O(0)? In other words, is 0 O(0)?
I thought answering this in a separate question
Not only is this a perfectly sensible question, but it is important in certain situations involving amortized analysis, especially when "cost" means something other than "time" (for example, "atomic instructions").
Let's say there is a datastructure featuring multiple operation types, for which an amortized analysis is being conducted. It could well happen that one type of operation can always be funded fully using "coins" deposited during previous operations.
There is a simple example of this: the "multipop queue" described in Cormen, Leiserson, Rivest, Stein [CLRS09, 17.2, p. 457], and also on Wikipedia. Each time an item is pushed, a coin is put on the item, for a total amortized cost of 2. When (multi) pops occur, they can be fully paid for by taking one coin from each item popped, so the amortized cost of MULTIPOP(k) is O(0). To wit:
Note that the amortized cost of MULTIPOP is a constant (0) ... Moreover, we can also charge MULTIPOP operations nothing. To pop the first plate, we take the dollar of credit off the plate and use it to pay the actual cost of a POP operation. To pop a second plate, we again have a dollar of credit on the plate to pay for the POP operation, and so on. Thus, we have always charged enough up front to pay for MULTIPOP operations. In other words, since each plate on the stack has 1 dollar of credit on it, and the stack always has a nonnegative number of plates, we have ensured that the amount of credit is always nonnegative.
Thus O(0) is an important "complexity class" for certain amortized operations.
I would say it's O(1) by definition, but O(0) if you want to get technical about it: since O(k1g(n)) is equivalent to O(k2g(n)) for any constants k1 and k2, it follows that O(1 * 1) is equivalent to O(0 * 1), and therefore O(0) is equivalent to O(1).
However, the empty algorithm is not like, for example, the identity function, whose definition is something like "return your input". The empty algorithm is more like an empty statement, or whatever happens between two statements. Its definition is "do absolutely nothing with your input", presumably without even the implied overhead of simply having input.
Consequently, the complexity of the empty algorithm is unique in that O(0) has a complexity of zero times whatever function strikes your fancy, or simply zero. It follows that since the whole business is so wacky, and since O(0) doesn't already mean something useful, and since it's slightly ridiculous to even discuss such things, a reasonable special case for O(0) is something like this:
The complexity of the empty algorithm is O(0) in time and space. An algorithm with time complexity O(0) is equivalent to the empty algorithm.
So there you go.
Several answers say that the complexity is O(1) because the time is a constant and the time is bounded by the product of some coefficient and 1. Well, it is true that the time is a constant and it is bounded that way, but that doesn't mean that the best answer is O(1).
Consider an algorithm that runs in linear time. It is ordinarily designated as O(n) but let's play devil's advocate. The time is bounded by the product of some coefficient and n^2. If we consider O(n^2) to be a set, the set of all algorithms whose complexity is small enough, then linear algorithms are in that set. But it doesn't mean that the best answer is O(n^2).
The empty algorithm is in O(n^2) and in O(n) and in O(1) and in O(0). I vote for O(0).
There is no such thing as O(0)
. Even an oracle machine or a hypercomputer require the time for one operation, i.e. solve(the_goldbach_conjecture)
, ergo:
All machines, theoretical or real, finite or infinite produce algorithms with a minimum time complexity of O(1)
.
But then again, this code right here is O(0)
:
// Hello world!
:)
0 = O(f) for all function f, since 0 <= |f|, so it is also O(0).
No. It's O(c) by convention whenever you don't have dependence on input size, where c is any positive constant (typically 1 is used - O(1) = O(12.37)).