I worked now for quite some time using python and pandas for analysing a set of hourly data and find it quite nice (Coming from Matlab.)
Now I am kind of stuck. I cr
Here's an example that does what you want:
In [32]: from datetime import datetime as dt
In [33]: dr = p.DateRange(dt(2009,1,1),dt(2010,12,31), offset=p.datetools.Hour())
In [34]: hr = dr.map(lambda x: x.hour)
In [35]: dt = p.DataFrame(rand(len(dr),2), dr)
In [36]: dt
Out[36]:
<class 'pandas.core.frame.DataFrame'>
DateRange: 17497 entries, 2009-01-01 00:00:00 to 2010-12-31 00:00:00
offset: <1 Hour>
Data columns:
0 17497 non-null values
1 17497 non-null values
dtypes: float64(2)
In [37]: dt[(hr >= 10) & (hr <=16)]
Out[37]:
<class 'pandas.core.frame.DataFrame'>
Index: 5103 entries, 2009-01-01 10:00:00 to 2010-12-30 16:00:00
Data columns:
0 5103 non-null values
1 5103 non-null values
dtypes: float64(2)
As it looks messy in my comment above, I decided to provide another answer which is a syntax update for pandas 0.10.0 on Marc's answer, combined with Wes' hint:
import pandas as pd
from datetime import datetime
dr = pd.date_range(datetime(2009,1,1),datetime(2010,12,31),freq='H')
dt = pd.DataFrame(rand(len(dr),2),dr)
hour = dt.index.hour
selector = ((10 <= hour) & (hour <= 13)) | ((20<=hour) & (hour<=23))
data = dt[selector]
Pandas DataFrame has a built-in function pandas.DataFrame.between_time
df = pd.DataFrame(np.random.randn(1000, 2),
index=pd.date_range(start='2017-01-01', freq='10min', periods=1000))
Create 2 data frames for each period of time:
df1 = df.between_time(start_time='10:00', end_time='13:00')
df2 = df.between_time(start_time='20:00', end_time='23:00')
Data frame you want is merged and sorted df1 and df2:
pd.concat([df1, df2], axis=0).sort_index()
In upcoming pandas 0.8.0, you'll be able to write
hour = ts.index.hour
selector = ((10 <= hour) & (hour <= 13)) | ((20 <= hour) & (hour <= 23))
data = ts[selector]