I have a question regarding thread safety in Objective-C. I\'ve read a couple of other answers, some of the Apple documentation, and still have some doubts regarding this, s
As in Swift 3 in WWDC 2016 Session Session 720 Concurrent Programming With GCD in Swift 3, you should use queue
class MyObject {
private let internalState: Int
private let internalQueue: DispatchQueue
var state: Int {
get {
return internalQueue.sync { internalState }
}
set (newValue) {
internalQueue.sync { internalState = newValue }
}
}
}
Fold 1
Generally your understanding of what @synchronized
does is correct. However, technically, it doesn't make any code "thread-safe". It prevents different threads from aquiring the same lock at the same time, however you need to ensure that you always use the same synchronization token when performing critical sections. If you don't do it, you can still find yourself in the situation where two threads perform critical sections at the same time. Check the docs.
Fold 2 Most people would probably advise you to use NSRecursiveLock. If I were you, I'd use GCD. Here is a great document showing how to migrate from thread programming to GCD programming, I think this approach to the problem is a lot better than the one based on NSLock. In a nutshell, you create a serial queue and dispatch your tasks into that queue. This way you ensure that your critical sections are handled serially, so there is only one critical section performed at any given time.
Fold 3 This is the same as Fold 2, only more specific. Data base is a resource, by many means it's the same as the array or any other thing. If you want to see the GCD based approach in database programming context, take a look at fmdb implementation. It does exactly what I described in Fold2.
As a side note to Fold 3, I don't think that instantiating DatabaseManager each time you want to use the database and then releasing it is the correct approach. I think you should create one single database connection and retain it through your application session. This way it's easier to manage it. Again, fmdb is a great example on how this can be achieved.
Edit
If don't want to use GCD then yes, you will need to use some kind of locking mechanism, and yes, NSRecursiveLock
will prevent deadlocks if you use recursion in your methods, so it's a good choice (it is used by @synchronized
). However, there may be one catch. If it's possible that many threads will wait for the same resource and the order in which they get access is relevant, then NSRecursiveLock
is not enough. You may still manage this situation with NSCondition
, but trust me, you will save a lot of time using GCD in this case. If the order of the threads is not relevant, you are safe with locks.
Subclass NSMutableArray to provide locking for the accessor (read and write) methods. Something like:
@interface MySafeMutableArray : NSMutableArray { NSRecursiveLock *lock; } @end
@implementation MySafeMutableArray
- (void)addObject:(id)obj {
[self.lock lock];
[super addObject: obj];
[self.lock unlock];
}
// ...
@end
This approach encapsulates the locking as part of the array. Users don't need to change their calls (but may need to be aware that they could block/wait for access if the access is time critical). A significant advantage to this approach is that if you decide that you prefer not to use locks you can re-implement MySafeMutableArray to use dispatch queues - or whatever is best for your specific problem. For example, you could implement addObject as:
- (void)addObject:(id)obj {
dispatch_sync (self.queue, ^{ [super addObject: obj] });
}
Note: if using locks, you'll surely need NSRecursiveLock, not NSLock, because you don't know of the Objective-C implementations of addObject, etc are themselves recursive.