(Note: My question has very similar concerns as the person who asked this question three months ago, but it was never answered.)
I recently started working
Given your scenario, I would simply opt for a set of interfaces that represent what data structures (your Domain Models) need to be returned from your data layer. Your implementation can then be a mixture of EF, Raw ADO.Net or any other type of Data Store/Provider. The key strategy here is that the implementation is abstracted away from the immediate consumer - your Domain layer. This is useful when you want to unit test your domain objects and, in less common situations - change your data provider / database platform altogether.
You should, if you havent already, consider using an IOC container as they make loose coupling of your solution very easy by way of Dependency Injection. There are many available, personally i prefer Ninject.
The domain layer should encapsulate all of your business logic - the rules and requirements of the problem domain, and can be consumed directly by your MVC3 web application. In certain situations it makes sense to introduce a services layer that sits above the domain layer, but this is not always necessary, and can be overkill for straightforward web applications.
Another thing to consider is that even when you know that you will be working with a single data store it still might make sense to create a repository abstraction. The reason is that there might be a function that your application needs that your ORM du jour either does badly (performance), not at all, or you just don't know how to make the ORM bend to your needs.
If you are wrapping your ORM behind a well thought out repository interface, you can easily switch between different technologies as you see fit. It's not uncommon in my repositories to see some methods use EF for their work and others to use something like PetaPoco, or (gasp) ADO.net code. The repository abstraction enables you to use exactly the right tool for the job at hand without leaking these complexities into the client code.
I think there is a big misunderstanding of what many articles call "repository." And that's why there are doubts about what real value those abstractions bring.
In my opinion the repository in it's pure form is IEnumerable, while you and many articles are talking about "data access service."
I've blogged about it here.
It would be useful in situations where you have multiple data sources, and want to access them using a consistent coding strategy.
For example, you may have multiple EF data models, and some data accessed using traditional ADO.NET with stored procs, and some data accessed using a 3rd party API, and some accessed from an Access database living on a Windows NT4 server sitting under a blanket of dust in your broom closet.
You may not want your business or front-end layers to care about where the data is coming from, so you build a generic repository pattern to access "data", rather than to access "Entity Framework data".
In this scenario, your actual repository implementations will be different from each other, but the code that calls them wouldn't know the difference.
You're right,in those simple cases the repository is just another name for a DAO and it brings only one value: the fact that you can switch EF to another data access technique. Today you're using MSSQL, tomorrow you'll want a cloud storage. OR using a micro orm instead of EF or switching from MSSQL to MySql.
In all those cases it's good that you use a repository, as the rest of the app won't care about what storage you're using now.
There's also the limited case where you get information from multiple sources (db + file system), a repo will act as the facade, but it's still a another name for a DAO.
A 'real' repository is valid only when you're dealing with domain/business objects, for data centric apps which won't change storage, the ORM alone is enough.
Entity Framework's DbContext
basically resembles a Repository (and a Unit of Work as well). You don't necessarily have to abstract it away in simple scenarios.
The main advantage of the repository is that your domain can be ignorant and independent of the persistence mechanism. In a layer based architecture, the dependencies point from the UI layer down through the domain (or usually called business logic layer) to the data access layer. This means the UI depends on the BLL, which itself depends on the DAL.
In a more modern architecture (as propagated by domain-driven design and other object-oriented approaches) the domain should have no outward-pointing dependencies. This means the UI, the persistence mechanism and everything else should depend on the domain, and not the other way around.
A repository will then be represented through its interface inside the domain but have its concrete implementation outside the domain, in the persistence module. This way the domain depends only on the abstract interface, not the concrete implementation.
That basically is object-orientation versus procedural programming on an architectural level.
See also the Ports and Adapters a.k.a. Hexagonal Architecture.
Another advantage of the repository is that you can create similar access mechanisms to various data sources. Not only to databases but to cloud-based stores, external APIs, third-party applications, etc.