please check out the IPython configuration system, implemented via traitlets for the type enforcement you are doing manually.
Cut and pasted here to comply with SO guidelines for not just dropping links as the content of links changes over time.
traitlets documentation
Here are the main requirements we wanted our configuration system to have:
Support for hierarchical configuration information.
Full integration with command line option parsers. Often, you want to read a configuration file, but then override some of the values with command line options. Our configuration system automates this process and allows each command line option to be linked to a particular attribute in the configuration hierarchy that it will override.
Configuration files that are themselves valid Python code. This accomplishes many things. First, it becomes possible to put logic in your configuration files that sets attributes based on your operating system, network setup, Python version, etc. Second, Python has a super simple syntax for accessing hierarchical data structures, namely regular attribute access (Foo.Bar.Bam.name). Third, using Python makes it easy for users to import configuration attributes from one configuration file to another.
Fourth, even though Python is dynamically typed, it does have types that can be checked at runtime. Thus, a 1 in a config file is the integer ‘1’, while a '1' is a string.
A fully automated method for getting the configuration information to the classes that need it at runtime. Writing code that walks a configuration hierarchy to extract a particular attribute is painful. When you have complex configuration information with hundreds of attributes, this makes you want to cry.
Type checking and validation that doesn’t require the entire configuration hierarchy to be specified statically before runtime. Python is a very dynamic language and you don’t always know everything that needs to be configured when a program starts.
To acheive this they basically define 3 object classes and their relations to each other:
1) Configuration - basically a ChainMap / basic dict with some enhancements for merging.
2) Configurable - base class to subclass all things you'd wish to configure.
3) Application - object that is instantiated to perform a specific application function, or your main application for single purpose software.
In their words:
Application: Application
An application is a process that does a specific job. The most obvious application is the ipython command line program. Each application reads one or more configuration files and a single set of command line options and then produces a master configuration object for the application. This configuration object is then passed to the configurable objects that the application creates. These configurable objects implement the actual logic of the application and know how to configure themselves given the configuration object.
Applications always have a log attribute that is a configured Logger. This allows centralized logging configuration per-application.
Configurable: Configurable
A configurable is a regular Python class that serves as a base class for all main classes in an application. The Configurable base class is lightweight and only does one things.
This Configurable is a subclass of HasTraits that knows how to configure itself. Class level traits with the metadata config=True become values that can be configured from the command line and configuration files.
Developers create Configurable subclasses that implement all of the logic in the application. Each of these subclasses has its own configuration information that controls how instances are created.