I'm only 99.9% convinced by the claim that the size of the state space makes it impossible to hope for a solution.
Sure, 10^50 is an impossibly large number. Let's call the size of the state space n.
What's the bound on the number of moves in the longest possible game? Since all games end in a finite number of moves there exists such a bound, call it m.
Starting from the initial state, can't you enumerate all n moves in O(m) space? Sure, it takes O(n) time, but the arguments from the size of the universe don't directly address that. O(m) space might not even be very much. For O(m) space couldn't you also track, during this traversal, whether the continuation of any state along the path you are traversing leads to EitherMayWin, EitherMayForceDraw, WhiteMayWin, WhiteMayWinOrForceDraw, BlackMayWin, or BlackMayWinOrForceDraw? (There's a lattice depending on whose turn it is, annotate each state in the history of your traversal with the lattice meet.)
Unless I'm missing something, that's an O(n) time / O(m) space algorithm for determining which of the possible categories chess falls into. Wikipedia cites an estimate for the age of the universe at approximately 10^60th Planck times. Without getting into a cosmology argument, let's guess that there's about that much time left before the heat/cold/whatever death of the universe. That leaves us needing to evaluate one move every 10^10th Planck times, or every 10^-34 seconds. That's an impossibly short time (about 16 orders of magnitude shorter than the shortest times ever observed). Let's optimistically say that with a super-duper-good implementation running on top of the line present-or-forseen-non-quantum-P-is-a-proper-subset-of-NP technology we could hope to evaluate (take a single step forward, categorize the resulting state as an intermediate state or one of the three end states) states at a rate of 100 MHz (once every 10^-8 seconds). Since this algorithm is very parallelizable, this leaves us needing 10^26th such computers or about one for every atom in my body, together with the ability to collect their results.
I suppose there's always some sliver of hope for a brute-force solution. We might get lucky and, in exploring only one of white's possible opening moves, both choose one with much-lower-than-average fanout and one in which white always wins or wins-or-draws.
We could also hope to shrink the definition of chess somewhat and persuade everyone that it's still morally the same game. Do we really need to require positions to repeat 3 times before a draw? Do we really need to make the running-away party demonstrate the ability to escape for 50 moves? Does anyone even understand what the heck is up with the en passant rule? ;) More seriously, do we really need to force a player to move (as opposed to either drawing or losing) when his or her only move to escape check or a stalemate is an en passant capture? Could we limit the choice of pieces to which a pawn may be promoted if the desired non-queen promotion does not lead to an immediate check or checkmate?
I'm also uncertain about how much allowing each computer hash-based access to a large database of late game states and their possibly outcomes (which might be relatively feasible on existing hardware and with existing endgame databases) could help in pruning the search earlier. Obviously you can't memoize the entire function without O(n) storage, but you could pick a large integer and memoize that many endgames enumerating backwards from each possible (or even not easily provably impossible, I suppose) end state.