I am trying to create multiple linear regression models from a list of variable combinations (I also have them separately as a data-frame if that is more useful!)
Th
You don't even have to use loops. Apply should work nicely.
training_data <- as.data.frame(matrix(sample(1:64), nrow = 8))
colnames(training_data) <- c("independent_variable", paste0("x", 1:7))
Vars <- as.list(c("x1+x2+x3",
"x1+x2+x4",
"x1+x2+x5",
"x1+x2+x6",
"x1+x2+x7"))
allModelsList <- lapply(paste("independent_variable ~", Vars), as.formula)
allModelsResults <- lapply(allModelsList, function(x) lm(x, data = training_data))
If you need models summaries you can add :
allModelsSummaries = lapply(allModelsResults, summary)
For example you can access the coefficient R² of the model lm(independent_variable ~ x1+x2+x3)
by doing this:
allModelsSummaries[[1]]$r.squared
I hope it helps.
We can create the formula with paste
out <- vector('list', length(var_list))
for (i in seq_along(var_list)){
out[[i]] <- lm(paste('independent_variable', '~', var_list[i]),
data = training_data)
}
Or otherwise, it can be done with reformulate
lm(reformulate(var_list[i], 'independent_variable'), data = training_data)