I would like to create variable names dynamically while using dplyr; although, I’d be fine with a non-dplyr solution as well.
For Example:
data(iris)
You can use mutate_all
(or mutate_at
for specific columns) then prepend lag_
to the column names.
data(iris)
library(dplyr)
lag_iris <- iris %>%
group_by(Species) %>%
mutate_all(funs(lag(.))) %>%
ungroup
colnames(lag_iris) <- paste0('lag_', colnames(lag_iris))
head(lag_iris)
lag_Sepal.Length lag_Sepal.Width lag_Petal.Length lag_Petal.Width lag_Species
<dbl> <dbl> <dbl> <dbl> <fctr>
1 NA NA NA NA setosa
2 5.1 3.5 1.4 0.2 setosa
3 4.9 3.0 1.4 0.2 setosa
4 4.7 3.2 1.3 0.2 setosa
5 4.6 3.1 1.5 0.2 setosa
6 5.0 3.6 1.4 0.2 setosa
Since you're also happy with a non-dplyr, try this:
lagger <- function(x, n) c(rep(NA,n), head(x,-n) )
iris[paste0("lag_", names(iris) )] <- lapply(iris, lagger, n=1)
head(iris,2)[-(1:5)]
# lag_Sepal.Length lag_Sepal.Width lag_Petal.Length lag_Petal.Width lag_Species
#1 NA NA NA NA NA
#2 5.1 3.5 1.4 0.2 1
Here is a data.table approach. I chose columns with numbers in this case. What you want to do is to choose column names and create new column names in advance. Then, you apply shift()
, which works like lag()
and lead()
in the dplyr package, to each of the columns you chose.
library(data.table)
# Crate a df for this demo.
mydf <- iris
# Choose columns that you want to apply lag() and create new colnames.
cols = names(iris)[sapply(iris, is.numeric)]
anscols = paste("lag_", cols, sep = "")
# Apply shift() to each of the chosen columns.
setDT(mydf)[, (anscols) := shift(.SD, 1, type = "lag"),
.SDcols = cols]
Sepal.Length Sepal.Width Petal.Length Petal.Width Species lag_Sepal.Length lag_Sepal.Width
1: 5.1 3.5 1.4 0.2 setosa NA NA
2: 4.9 3.0 1.4 0.2 setosa 5.1 3.5
3: 4.7 3.2 1.3 0.2 setosa 4.9 3.0
4: 4.6 3.1 1.5 0.2 setosa 4.7 3.2
5: 5.0 3.6 1.4 0.2 setosa 4.6 3.1
---
146: 6.7 3.0 5.2 2.3 virginica 6.7 3.3
147: 6.3 2.5 5.0 1.9 virginica 6.7 3.0
148: 6.5 3.0 5.2 2.0 virginica 6.3 2.5
149: 6.2 3.4 5.4 2.3 virginica 6.5 3.0
150: 5.9 3.0 5.1 1.8 virginica 6.2 3.4
lag_Petal.Length lag_Petal.Width
1: NA NA
2: 1.4 0.2
3: 1.4 0.2
4: 1.3 0.2
5: 1.5 0.2
---
146: 5.7 2.5
147: 5.2 2.3
148: 5.0 1.9
149: 5.2 2.0
150: 5.4 2.3