By \"practically equivalent\", I mean that their distances are of order epsilon apart (or 0.000001). Equality in MATLAB often doesn\'t really work for long floating numbers.
You can get the answer by calculating distance between two vectors using MATLAB's pdist2 function.
dist=pdist2(A1,A2);
minDist=min(dist,[],2);
indices_A1=minDist<=0.000001;
desired_A1=A1(indices_A1);
Not tested, but should work.
Since you care about a distance from any element to any element, you can create a distance matrix from the vectorized matrices and probe that for the distance threshold. Example:
A = rand(10, 4); % (example) matrix A
B = rand(3, 5); % matrix B of different size
minDist = 0.005;
Solution: Repeat vectorized matrices, column- and row-wise to get same size matrices and apply matrix-based distance estimation:
Da = repmat(A(:), 1, length(B(:))); % size 40 x 15
Db = repmat(B(:)', length(A(:)), 1); % size 40 x 15
DD = Da - Db;
indA = any(abs(DD) < minDist, 2);
The use of any() will give you logical indices to any value of A that is close to any value of B). You can directly index/return the elements of A using indA.
The matrix DD (as @Shai also points out) can be equivalently estimated through bsxfun
DD = bsxfun(@minus, A(:), B(:)');
In addition: you can map from row-index (corresponding to A elements) back to matrix A indices using:
[iA, jA] = ind2sub(size(A), indA);
Assert/test that all the returned values are less than minDist,e.g. using:
for k = 1:length(iA);
d(k) = min(min(abs(A(iA(k), jA(k)) - B)));
end
all(d < minDist)
(tested in Octave 3.6.2)