I have class where the relevant part looks like
class C {
void Method(SomeClass obj) {
list.Add(obj);
}
List> l
I don't know anything about Java's ?
construct, but I think the following most closely preserves your existing syntax while also matching your description.
class SomeClass<T>
{
}
class C
{
void Add<T>(SomeClass<T> item)
{
Type type = typeof(SomeClass<T>);
if (!list.ContainsKey(type))
list[type] = new List<SomeClass<T>>();
var l = (List<SomeClass<T>>)list[type];
l.Add(item);
}
public void Method<T>(SomeClass<T> obj)
{
Add(obj);
}
readonly Dictionary<Type, object> list = new Dictionary<Type, object>();
}
test it with the following:
class Program
{
static void Main(string[] args)
{
var c = new C();
var sc1 = new SomeClass<int>();
var sc2 = new SomeClass<String>();
c.Method(sc1);
c.Method(sc2);
c.Method(sc1);
c.Method(sc2);
}
}
To do what you want, you have two options.
You can use List<object>, and handle objects. This will not be typesafe, and will have boxing/unboxing issues for value types, but it will work.
Your other option is to use a generic constraint to limit to a base class or interface, and use a List<Interface>.
Personally, I would do this where possible; move the generic parameter from the method, to the class.
class C<T> {
void Method(SomeClass<T> obj) {
list.Add(obj);
}
List<?> list = new List<?>();
}
If your generic list is a member, it stands to reason that the class should be constructed with this in mind. It is hard for us to suggest the best pattern without more usage context for the class.
I don't think you can do this in C#... you would have to add the type parameter to the class:
class C<T> {
void Method(SomeClass<T> obj) {
list.Add(obj);
}
List<SomeClass<T>> list = new List<SomeClass<T>>();
}
The other option would be to use an interface:
class C {
void Method<T>(T obj)
where T : ISomeClass {
list.Add(obj);
}
List<ISomeClass> list = new List<ISomeClass>();
}
Unfortunately, there is no direct equivalent in C# 3.0 as generics are invariant.
You'll be able to do something like this in a graceful manner using C# 4.0 safe co/contra-variance feature.
To workaround it, you could inherit SomeClass<T>
from a nongeneric base and create a List<BaseClass>
instead.
If each instance of the class should hold only one type, you could make the class itself generic and set the type parameter there.