The following program throws the following exception:
java.lang.IllegalArgumentException: Comparison method violates its general contract!
It depends on the implementation, but in openjdk 8 the size of the array is checked against MIN_MERGE, which is equal to 32. This avoids the call to mergeLo
/mergeHi
which throw the exception.
From JDK / jdk / openjdk / 7u40-b43 8-b132 7-b147 - 8-b132 / java.util.TimSort:
static <T> void sort(T[] a, int lo, int hi, Comparator<? super T> c, T[] work, int workBase, int workLen) { assert c != null && a != null && lo >= 0 && lo <= hi && hi <= a.length; int nRemaining = hi - lo; if (nRemaining < 2) return; // Arrays of size 0 and 1 are always sorted // If array is small, do a "mini-TimSort" with no merges if (nRemaining < MIN_MERGE) { int initRunLen = countRunAndMakeAscending(a, lo, hi, c); binarySort(a, lo, hi, lo + initRunLen, c); return; } /** * March over the array once, left to right, finding natural runs, * extending short natural runs to minRun elements, and merging runs * to maintain stack invariant. */ TimSort<T> ts = new TimSort<>(a, c, work, workBase, workLen); int minRun = minRunLength(nRemaining); do { // Identify next run int runLen = countRunAndMakeAscending(a, lo, hi, c); // If run is short, extend to min(minRun, nRemaining) if (runLen < minRun) { int force = nRemaining <= minRun ? nRemaining : minRun; binarySort(a, lo, lo + force, lo + runLen, c); runLen = force; } // Push run onto pending-run stack, and maybe merge ts.pushRun(lo, runLen); ts.mergeCollapse(); // Advance to find next run lo += runLen; nRemaining -= runLen; } while (nRemaining != 0); // Merge all remaining runs to complete sort assert lo == hi; ts.mergeForceCollapse(); assert ts.stackSize == 1; }
Java 8 uses TimSort algorithm to sort the input. In TimSort
there is a merging phase that happens when the length is at least 32. When the length is lower than 32 then a simple sorting algorithm is used that probably doesn't detect the contract violation. Let the source code comments of TimSort.java
speak for itself:
class TimSort<T> {
/**
* This is the minimum sized sequence that will be merged. Shorter
* sequences will be lengthened by calling binarySort. If the entire
* array is less than this length, no merges will be performed.
*
* This constant should be a power of two. It was 64 in Tim Peter's C
* implementation, but 32 was empirically determined to work better in
* this implementation. In the unlikely event that you set this constant
* to be a number that's not a power of two, you'll need to change the
* {@link #minRunLength} computation.
*
* If you decrease this constant, you must change the stackLen
* computation in the TimSort constructor, or you risk an
* ArrayOutOfBounds exception. See listsort.txt for a discussion
* of the minimum stack length required as a function of the length
* of the array being sorted and the minimum merge sequence length.
*/
private static final int MIN_MERGE = 32;