I read the similar topic here. I think the question is different or at least .index()
couldnot solve my problem.
This is a simple code in R and its answ
You could also use heapq
to find the index of the smallest. Then you can chose to find multiple (for example index of the 2 smallest).
import heapq
x = np.array([1,2,3,4,0,1,2,3,4,11])
heapq.nsmallest(2, (range(len(x))), x.take)
Returns
[4, 0]
NumPy for R provides you with a bunch of R functionalities in Python.
As to your specific question:
import numpy as np
x = [1,2,3,4,0,1,2,3,4,11]
arr = np.array(x)
print(arr)
# [ 1 2 3 4 0 1 2 3 4 11]
print(arr.argmin(0)) # R's which.min()
# 4
print((arr==2).nonzero()) # R's which()
# (array([1, 6]),)
Numpy does have built-in functions for it
x = [1,2,3,4,0,1,2,3,4,11]
x=np.array(x)
np.where(x == 2)
np.min(np.where(x==2))
np.argmin(x)
np.where(x == 2)
Out[9]: (array([1, 6], dtype=int64),)
np.min(np.where(x==2))
Out[10]: 1
np.argmin(x)
Out[11]: 4
A simple loop will do:
res = []
x = [1,2,3,4,0,1,2,3,4,11]
for i in range(len(x)):
if check_condition(x[i]):
res.append(i)
One liner with comprehension:
res = [i for i, v in enumerate(x) if check_condition(v)]
Here you have a live example
The method based on python indexing and numpy, which returns the value of the desired column based on the index of the minimum/maximum value
df.iloc[np.argmin(df['column1'].values)]['column2']