I have to plot a wordcloud. \'tweets.csv\' is a Pandas dataframe which has a column named \'text\'. The plotted graph hasn\'t been based on the most common words, tough. How
import pandas as pd
df = pd.DataFrame({'word': ['how', 'are', 'you', 'doing', 'this', 'afternoon'],
'count': [7, 10, 4, 1, 20, 100]})
word
& count
columns to a dict
WordCloud().generate_from_frequencies()
requires a dict
data = dict(zip(df['word'].tolist(), df['count'].tolist()))
print(data)
>>> {'how': 7, 'are': 10, 'you': 4, 'doing': 1, 'this': 20, 'afternoon': 100}
.generate_from_frequencies
from wordcloud import WordCloud
wc = WordCloud(width=800, height=400, max_words=200).generate_from_frequencies(data)
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 10))
plt.imshow(wc, interpolation='bilinear')
plt.axis('off')
plt.show()
twitter_mask = np.array(Image.open('twitter.png'))
wc = WordCloud(background_color='white', width=800, height=400, max_words=200, mask=twitter_mask).generate_from_frequencies(data_nyt)
plt.figure(figsize=(10, 10))
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")
plt.figure()
plt.imshow(twitter_mask, cmap=plt.cm.gray, interpolation='bilinear')
plt.axis("off")
plt.show()