Edit: this is not a duplicate of Determine if an image exists within a larger image, and if so, find it, using Python since I do not know the pattern beforehand<
The goal is to find several equal or very similar patterns which are not known before in a picture. As it is this problem is still a bit ill posed.
For the simple case of non-overlapping patterns with simple background, the answer of Yves Daoust using segmentation is well performing but fails if patterns are very close or overlapping.
For other cases the idea of the keypoints by Micka will help but might not perform well if there is noise or might be slow.
I have one alternative: look at correlations of subblocks of the image.
In pseudocode:
Sorry, I cannot make this a full Matlab project right now, but I hope this helps you.
You can try to use described keypoints (Sift/SURF/ORB/etc.) to find features in the image and try to detect the same features in the image. You can see such a result in How to find euclidean distance between keypoints of a single image in opencv where 3x the same image is present and features are detected and linked between those subimages automatically.
In your image the result looks like
so you can see that the different occurances of the same pattern is indeed automatically detected and linked.
Next steps would be to group features to objects, so that the "whole" pattern can be extracted. Once you have a candidate for a pattern, you can extract a homography for each occurance of the pattern (with one reference candidate pattern) to verify that it is a pattern. One open problem is how to find such candidates. Maybe it is worth trying to find "parallel features", so keypoint matches that have parallel lines and/or same length lines (see image). Or maybe there is some graph theory approach.
All in all, this whole approach will have some advantages and disadvantes:
Advantages:
Disadvantages
Those are some thoughts and probably not complete ;)
Unfortunately no full code yet for your concrete task, but I hope the idea is clear.
For such a clean image, it suffices to segment the patterns by blob analysis and to compare the segments or ROI that contain them. The size is a first matching criterion. The SAD, SSD or correlation similarity scores can do finer comparison.
In practice you will face more difficulties such as
not possible to segment the patterns
geometric variations in size/orientation
partial occlusion
...
Handling these is out of the scope of this answer; it makes things much harder than in the "toy" case.