I have a dataset will some missing data that looks like this:
id category value
1 A NaN
2 B NaN
3 A 10.5
I think you can use groupby and apply fillna with mean. Then get NaN if some category has only NaN values, so use mean of all values of column for filling NaN:
df.value = df.groupby('category')['value'].apply(lambda x: x.fillna(x.mean()))
df.value = df.value.fillna(df.value.mean())
print (df)
id category value
0 1 A 6.25
1 2 B 1.00
2 3 A 10.50
3 4 C 4.15
4 5 A 2.00
5 6 B 1.00
You can also use GroupBy + transform to fill NaN values with groupwise means. This method avoids inefficient apply + lambda. For example:
df['value'] = df['value'].fillna(df.groupby('category')['value'].transform('mean'))
df['value'] = df['value'].fillna(df['value'].mean())