Given a sample MultiIndex:
idx = pd.MultiIndex.from_product([[0, 1, 2], [\'a\', \'b\', \'c\', \'d\']])
df = pd.DataFrame({\'value\' : np.arange(12)}, ind
Another alternative, which you should think of when using stack/unstack (though unstack is clearly better in this case!) is pivot_table:
In [11]: df.pivot_table(values="value", index=df.index.get_level_values(0), columns=df.index.get_level_values(1))
Out[11]:
a b c d
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
By using get_level_values
pd.crosstab(df.index.get_level_values(0),df.index.get_level_values(1),values=df.value,aggfunc=np.sum)
Out[477]:
col_0 a b c d
row_0
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
Using unstack
and stack
In [5359]: dff = df['value'].unstack()
In [5360]: dff
Out[5360]:
a b c d
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
In [5361]: dff.stack().to_frame('name')
Out[5361]:
name
0 a 0
b 1
c 2
d 3
1 a 4
b 5
c 6
d 7
2 a 8
b 9
c 10
d 11