Like in this post:
I\'m having a similar problem. The pointer from the malloc in create_bitmap
It looks like the problem is that you are releasing a pointer to the returned CGImage
, rather than the CGImage
itself. I too was having similar issues before with continual growing allocations and an eventual app crash. I addressed it by allocating a CGImage
rather than a CGImageRef
. After the changes run your code in Insturments with allocations, and you should not see anymore perpetual memory consumption from malloc. As well if you use the class method imageWithCGImage
you will not have to worry about autoreleasing your UIImage
later on.
I typed this on a PC so if you drop it right into XCode you may have syntax issue, I appologize in advance; however the principal is sound.
CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();
CGContextRef context = CGBitmapContextCreate(NULL, blah blah blah);
CGColorSpaceRelease(colorSpace);
// ... draw into context
CGImage cgImage = CGBitmapContextCreateImage(context);
UIImage * image = [UIImage imageWithCGImage:cgImage];
CGImageRelease(cgImage);
CGContextRelease(context);
return image;
This really helped me! Here's how I used it to fix that nasty leak problem:
CGImage *cgImage = CGBitmapContextCreateImage(context);
CFDataRef dataRef = CGDataProviderCopyData(CGImageGetDataProvider(cgImage));
CGImageRelease(cgImage);
image->imageRef = dataRef;
image->image = CFDataGetBytePtr(dataRef);
Notice, I had to store the CFDataRef (for a CFRelease(image->imageRef)) in my ~Image function. Hopefully this also helps others...JR
I had this problem and it drove me nuts for a few days. After much digging and noticing a leak in CG Raster Data using Instruments.
The problem seems to lie inside CoreGraphics. My problem was when i was using CGBitmapContextCreateImage in a tight loop it would over a period of time retain some images (800kb each) and this slowly leaked out.
After a few days of tracing with Instruments I found a workaround was to use CGDataProviderCreateWithData method instead. The interesting thing was the output was the same CGImageRef but this time there would be no CG Raster Data used in VM by Core graphics and no leak. Im assuming this is an internal problem or were misusing it.
Here is the code that saved me:
@autoreleasepool {
CGImageRef cgImage;
CreateCGImageFromCVPixelBuffer(pixelBuffer,&cgImage);
UIImage *image= [UIImage imageWithCGImage:cgImage scale:1.0 orientation:UIImageOrientationUp];
// DO SOMETHING HERE WITH IMAGE
CGImageRelease(cgImage);
}
The key was using CGDataProviderCreateWithData in the method below.
static OSStatus CreateCGImageFromCVPixelBuffer(CVPixelBufferRef pixelBuffer, CGImageRef *imageOut)
{
OSStatus err = noErr;
OSType sourcePixelFormat;
size_t width, height, sourceRowBytes;
void *sourceBaseAddr = NULL;
CGBitmapInfo bitmapInfo;
CGColorSpaceRef colorspace = NULL;
CGDataProviderRef provider = NULL;
CGImageRef image = NULL;
sourcePixelFormat = CVPixelBufferGetPixelFormatType( pixelBuffer );
if ( kCVPixelFormatType_32ARGB == sourcePixelFormat )
bitmapInfo = kCGBitmapByteOrder32Big | kCGImageAlphaNoneSkipFirst;
else if ( kCVPixelFormatType_32BGRA == sourcePixelFormat )
bitmapInfo = kCGBitmapByteOrder32Little | kCGImageAlphaNoneSkipFirst;
else
return -95014; // only uncompressed pixel formats
sourceRowBytes = CVPixelBufferGetBytesPerRow( pixelBuffer );
width = CVPixelBufferGetWidth( pixelBuffer );
height = CVPixelBufferGetHeight( pixelBuffer );
CVPixelBufferLockBaseAddress( pixelBuffer, 0 );
sourceBaseAddr = CVPixelBufferGetBaseAddress( pixelBuffer );
colorspace = CGColorSpaceCreateDeviceRGB();
CVPixelBufferRetain( pixelBuffer );
provider = CGDataProviderCreateWithData( (void *)pixelBuffer, sourceBaseAddr, sourceRowBytes * height, ReleaseCVPixelBuffer);
image = CGImageCreate(width, height, 8, 32, sourceRowBytes, colorspace, bitmapInfo, provider, NULL, true, kCGRenderingIntentDefault);
if ( err && image ) {
CGImageRelease( image );
image = NULL;
}
if ( provider ) CGDataProviderRelease( provider );
if ( colorspace ) CGColorSpaceRelease( colorspace );
*imageOut = image;
return err;
}
static void ReleaseCVPixelBuffer(void *pixel, const void *data, size_t size)
{
CVPixelBufferRef pixelBuffer = (CVPixelBufferRef)pixel;
CVPixelBufferUnlockBaseAddress( pixelBuffer, 0 );
CVPixelBufferRelease( pixelBuffer );
}
Instead of manually creating your CGContextRef I'd suggest you leverage UIGraphicsBeginImageContext
as demonstrated in this post. More details on that set of routines can be found here. I trust it'll help to resolve this issue, or at the very least give you less memory you have to manage yourself.
UPDATE:
Given the new code, the retainCount
of the UIImage
as it comes out of the function will be 1, and assigning it to the imageView's image will cause it to bump to 2. At that point deallocating the imageView will leave the retainCount
of the UIImage
to be 1, resulting in a leak. It is important, then, after assigning the UIImage
to the imageView, to release
it. It may look a bit strange, but it will cause the retainCount
to be properly set to 1.
You're not the only one with this problem. I've had major problems with CGBitmapContextCreateImage(). When you turn on Zombie mode, it even warns you that memory is released twice (when it's not the case). There's definitely a problem when mixing CG* stuff with UI* stuff. I'm still trying to figure out how to code around this issue.
Side note: calling UIGraphicsBeginImageContext is not thread-safe. Be careful.