I\'ve been into C++ for some years but I have not found yet the solution to a problem I constantly have. Know how to solve it would be awesome.
What I have at the mo
This class makes a jump table for a given Enum
up to a certain count
size based off constructing some template and invoking it with the supplied args. It assumes the enum values start at 0, and go to Count-1.
template<class Enum, Enum Count, template<Enum>class Z>
struct magic_switch {
// return value of a call to magic_switch(Args...)
template<class...Args>
using R = std::result_of_t<Z<Enum(0)>(Args...)>;
// A function pointer for a jump table:
template<class...Args>
using F = R<Args...>(*)(Args&&...);
// Produces a single function pointer for index I and args Args...
template<size_t I, class...Args>
F<Args...> f() const {
using ret = R<Args...>;
return +[](Args&&...args)->ret{
using Invoke=Z<Enum(I)>;
return Invoke{}(std::forward<Args>(args)...);
};
}
// builds a jump table:
template<class...Args, size_t...Is>
std::array<F<Args...>,size_t(Count)>
table( std::index_sequence<Is...> ) const {
return {{
f<Is, Args...>()...
}};
}
template<class...Args>
R<Args...> operator()(Enum n, Args&&...args) {
// a static jump table for this case of Args...:
static auto jump=table<Args...>(std::make_index_sequence<size_t(Count)>{});
// Look up the nth entry in the jump table, and invoke it:
return jump[size_t(n)](std::forward<Args>(args)...);
}
};
then if you have an enum:
enum class abc_enum { a, b, c, count };
and a function object template:
template<abc_enum e>
struct stuff {
void operator()() const {
std::cout << (int)e << '\n';
}
};
you can dispatch:
magic_switch<abc_enum, abc_enum::count, stuff>{}(abc_enum::b);
in any case, within the template stuff
, you get the enum value as a compile time constant. You call it with a run time constant.
Overhead should be similar to a switch statement, or a vtable call, depending on what the compiler does optimization wise.
live example.
Note that setting Enum
to std::size_t
is valid.
In C++11 you need make_index_sequence
and index_sequence
:
template<size_t...>
struct index_sequence {};
namespace details {
template<size_t Count, size_t...szs>
struct sequence_maker : sequence_maker<Count-1, Count-1, szs...> {};
template<size_t...szs>
struct sequence_maker<0,szs...> {
using type = index_sequence<szs...>;
};
}
template<size_t Count>
using make_index_sequence=typename details::sequence_maker<Count>::type;
template<class...Ts>
using index_sequence_for=make_index_sequence<sizeof...(Ts)>;
and this alias:
template<class Sig>
using result_of_t=typename std::result_of<Sig>::type;
then strip std::
off their use in the above code.
live example.
To expand on my comment, ideally we'd have compile-time reflection and be able to write a generic dispatch function. In its absence, one option is to unfortunately use macros to do that for you using the X Macro pattern:
#define LIST_OF_CASES \
X_ENUM(kValue0) \
X_ENUM(kValue1) \
X_ENUM(kValue2)
enum MyEnum
{
# define X_ENUM(a) a,
LIST_OF_CASES
# undef X_ENUM
};
void dispatch(MyEnum val)
{
switch (val)
{
# define X_ENUM(a) case a: processData<a>(); break;
LIST_OF_CASES
# undef X_ENUM
default:
// something's really wrong here - can't miss cases using this pattern
}
}
One benefit of this approach is that it scales to large numbers of enumerations, it gets really hard to omit a case, and that you can attach extra information by using a multi-argument X_ENUM macro.
I know you said you'd like to avoid macros, but the alternative without virtual functions then is to have some sort of a static table of function pointers indexed by the enum, and that is just a virtual function in disguise (with admittedly lower overhead, but still suffering the cost of an indirect function call).
Boost variant does something like what you are doing. It lets you replace switch statements with a template based contruct that can check that all cases are defined at compile-time, but then select one at run-time.
e.g.,
using namespace boost;
using Data = variant<int, double>;
struct ProcessDataFn: static_visitor<void>
{
char* data;
void operator()(int& i)
{
// do something with data
}
void operator()(double& d)
{
// do something else
}
};
void processData(char* data, Data& dataOut)
{
apply_visitor(ProcessDataFn{data}, dataOut);
}
void example(char * data)
{
Data d = 0;
processData(data, d); // calls first overload of operator()
Data d = 0.0;
processData(data, d); // calls second overload
}