I want to do a quick and easy check if all column values for counts
are the same in a dataframe:
In:
import pandas as pd
d = {\'names\'
An efficient way to do this is by comparing the first value with the rest, and using all:
def is_unique(s):
a = s.to_numpy() # s.values (pandas<0.24)
return (a[0] == a).all()
is_unique(df['counts'])
# False
In the case of wanting to perform the same task on an entire dataframe, we can extend the above by setting axis=0
in all
:
def unique_cols(df):
a = df.to_numpy() # df.values (pandas<0.24)
return (a[0] == a).all(0)
For the shared example, we'd get:
unique_cols(df)
# array([False, False])
Here's a benchmark of the above methods compared with some other approaches, such as using nunique
(for a pd.Series
):
s_num = pd.Series(np.random.randint(0, 1_000, 1_100_000))
perfplot.show(
setup=lambda n: s_num.iloc[:int(n)],
kernels=[
lambda s: s.nunique() == 1,
lambda s: is_unique(s)
],
labels=['nunique', 'first_vs_rest'],
n_range=[2**k for k in range(0, 20)],
xlabel='N'
)
And bellow are the timings for a pd.DataFrame
. Let's compare too with a numba
approach, which is especially useful here since we can take advantage of short-cutting as soon as we see a repeated value in a given column (note: the numba approach will only work with numerical data):
from numba import njit
@njit
def unique_cols_nb(a):
n_cols = a.shape[1]
out = np.zeros(n_cols, dtype=np.int32)
for i in range(n_cols):
init = a[0, i]
for j in a[1:, i]:
if j != init:
break
else:
out[i] = 1
return out
If we compare the three methods:
df = pd.DataFrame(np.concatenate([np.random.randint(0, 1_000, (500_000, 200)),
np.zeros((500_000, 10))], axis=1))
perfplot.show(
setup=lambda n: df.iloc[:int(n),:],
kernels=[
lambda df: (df.nunique(0) == 1).values,
lambda df: unique_cols_nb(df.values).astype(bool),
lambda df: unique_cols(df)
],
labels=['nunique', 'unique_cols_nb', 'unique_cols'],
n_range=[2**k for k in range(0, 20)],
xlabel='N'
)
I think nunique
does much more work than necessary. Iteration can stop at the first difference. This simple and generic solution uses itertools
:
import itertools
def all_equal(iterable):
"Returns True if all elements are equal to each other"
g = itertools.groupby(iterable)
return next(g, True) and not next(g, False)
all_equal(df.counts)
One can use this even to find all columns with constant contents in one go:
constant_columns = df.columns[df.apply(all_equal)]
A slightly more readable but less performant alternative:
df.counts.min() == df.counts.max()
Add skipna=False
here if necessary.
Update using np.unique
len(np.unique(df.counts))==1
False
Or
len(set(df.counts.tolist()))==1
Or
df.counts.eq(df.counts.iloc[0]).all()
False
Or
df.counts.std()==0
False