I\'m trying to create a function which can be called with a lambda that takes either 0, 1 or 2 arguments. Since I need the code to work on both g++ 4.5 and vs2010(which doe
A lambda function is a class type with a single function call operator. You can thus detect the arity of that function call operator by taking its address and using overload resolution to select which function to call:
#include <iostream>
template<typename F,typename R>
void do_stuff(F& f,R (F::*mf)() const)
{
(f.*mf)();
}
template<typename F,typename R,typename A1>
void do_stuff(F& f,R (F::*mf)(A1) const)
{
(f.*mf)(99);
}
template<typename F,typename R,typename A1,typename A2>
void do_stuff(F& f,R (F::*mf)(A1,A2) const)
{
(f.*mf)(42,123);
}
template<typename F>
void do_stuff(F f)
{
do_stuff(f,&F::operator());
}
int main()
{
do_stuff([]{std::cout<<"no args"<<std::endl;});
do_stuff([](int a1){std::cout<<"1 args="<<a1<<std::endl;});
do_stuff([](int a1,int a2){std::cout<<"2 args="<<a1<<","<<a2<<std::endl;});
}
Be careful though: this won't work with function types, or class types that have more than one function call operator, or non-const
function call operators.
I thought the following would work but it doesn't, I'm posting it for two reasons.
Code follows:
#include <iostream>
#include <functional>
template <typename Ret>
unsigned arity(std::function<Ret()>) { return 0; }
template <typename Ret, typename A1>
unsigned arity(std::function<Ret(A1)>) { return 1; }
template <typename Ret, typename A1, typename A2>
unsigned arity(std::function<Ret(A1, A2)>) { return 2; }
// rinse and repeat
int main()
{
std::function<void(int)> f = [](int i) { }; // this binds fine
// Error: no matching function for call to 'arity(main()::<lambda(int)>)'
std::cout << arity([](int i) { });
}
This way works:
template<typename F>
auto call(F f) -> decltype(f(1))
{
return f(1);
}
template<typename F>
auto call(F f, void * fake = 0) -> decltype(f(2,3))
{
return f(2,3);
}
template<typename F>
auto call(F f, void * fake = 0, void * fake2 = 0) -> decltype(f(4,5,6))
{
return f(4,5,6);
}
int main()
{
auto x1 = call([](int a){ return a*10; });
auto x2 = call([](int a, int b){ return a*b; });
auto x3 = call([](int a, int b, int c){ return a*b*c; });
// x1 == 1*10
// x2 == 2*3
// x3 == 4*5*6
}
It works for all callable types (lambdas, functors, etc)
Compile time means of obtaining the arity of a function or a function object, including that of a lambda:
int main (int argc, char ** argv) {
auto f0 = []() {};
auto f1 = [](int) {};
auto f2 = [](int, void *) {};
std::cout << Arity<decltype(f0)>::value << std::endl; // 0
std::cout << Arity<decltype(f1)>::value << std::endl; // 1
std::cout << Arity<decltype(f2)>::value << std::endl; // 2
std::cout << Arity<decltype(main)>::value << std::endl; // 2
}
template <typename Func>
class Arity {
private:
struct Any {
template <typename T>
operator T ();
};
template <typename T>
struct Id {
typedef T type;
};
template <size_t N>
struct Size {
enum { value = N };
};
template <typename F>
static Size<0> match (
F f,
decltype(f()) * = nullptr);
template <typename F>
static Size<1> match (
F f,
decltype(f(Any())) * = nullptr,
decltype(f(Any())) * = nullptr);
template <typename F>
static Size<2> match (
F f,
decltype(f(Any(), Any())) * = nullptr,
decltype(f(Any(), Any())) * = nullptr,
decltype(f(Any(), Any())) * = nullptr);
public:
enum { value = Id<decltype(match(static_cast<Func>(Any())))>::type::value };
};