Upon creating an instance of a given ActiveRecord model object, I need to generate a shortish (6-8 characters) unique string to use as an identifier in URLs, in the style of
You could do something like this:
random_attribute.rb
module RandomAttribute
def generate_unique_random_base64(attribute, n)
until random_is_unique?(attribute)
self.send(:"#{attribute}=", random_base64(n))
end
end
def generate_unique_random_hex(attribute, n)
until random_is_unique?(attribute)
self.send(:"#{attribute}=", SecureRandom.hex(n/2))
end
end
private
def random_is_unique?(attribute)
val = self.send(:"#{attribute}")
val && !self.class.send(:"find_by_#{attribute}", val)
end
def random_base64(n)
val = base64_url
val += base64_url while val.length < n
val.slice(0..(n-1))
end
def base64_url
SecureRandom.base64(60).downcase.gsub(/\W/, '')
end
end
Raw
user.rb
class Post < ActiveRecord::Base
include RandomAttribute
before_validation :generate_key, on: :create
private
def generate_key
generate_unique_random_hex(:key, 32)
end
end
Here's a good method with no collision already implemented in plpgsql.
First step: consider the pseudo_encrypt function from the PG wiki.
This function takes a 32 bits integer as argument and returns a 32 bits integer that looks random to the human eye but uniquely corresponds to its argument (so that's encryption, not hashing). Inside the function, you may change the formula: (((1366.0 * r1 + 150889) % 714025) / 714025.0)
with another function known only by you that produces a result in the [0..1] range (just tweaking the constants will probably be good enough, see below my attempt at doing just that). Refer to the wikipedia article on the Feistel cypher for more theorical explanations.
Second step: encode the output number in the alphabet of your choice. Here's a function that does it in base 62 with all alphanumeric characters.
CREATE OR REPLACE FUNCTION stringify_bigint(n bigint) RETURNS text
LANGUAGE plpgsql IMMUTABLE STRICT AS $$
DECLARE
alphabet text:='abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789';
base int:=length(alphabet);
_n bigint:=abs(n);
output text:='';
BEGIN
LOOP
output := output || substr(alphabet, 1+(_n%base)::int, 1);
_n := _n / base;
EXIT WHEN _n=0;
END LOOP;
RETURN output;
END $$
Now here's what we'd get for the first 10 URLs corresponding to a monotonic sequence:
select stringify_bigint(pseudo_encrypt(i)) from generate_series(1,10) as i;
stringify_bigint ------------------ tWJbwb eDUHNb 0k3W4b w9dtmc wWoCi 2hVQz PyOoR cjzW8 bIGoqb A5tDHb
The results look random and are guaranteed to be unique in the entire output space (2^32 or about 4 billion values if you use the entire input space with negative integers as well). If 4 billion values was not wide enough, you may carefully combine two 32 bits results to get to 64 bits while not loosing unicity in outputs. The tricky parts are dealing correctly with the sign bit and avoiding overflows.
About modifying the function to generate your own unique results: let's change the constant from 1366.0 to 1367.0 in the function body, and retry the test above. See how the results are completely different:
NprBxb sY38Ob urrF6b OjKVnc vdS7j uEfEB 3zuaT 0fjsab j7OYrb PYiwJb
Update: For those who can compile a C extension, a good replacement for pseudo_encrypt()
is range_encrypt_element()
from the permuteseq extension, which has of the following advantages:
works with any output space up to 64 bits, and it doesn't have to be a power of 2.
uses a secret 64-bit key for unguessable sequences.
is much faster, if that matters.
You can hash the id:
Digest::MD5.hexdigest('1')[0..9]
=> "c4ca4238a0"
Digest::MD5.hexdigest('2')[0..9]
=> "c81e728d9d"
But somebody can still guess what you're doing and iterate that way. It's probably better to hash on the content