I was wondering how you can do polymorphism with references, as opposed to pointers.
To clarify, see the following minimal example:
cl
There's nothing odd. Polymorphisms works both for pointers and references:
struct Base { };
struct Derived : Base;
void foo(Base &);
int main() {
Derived x;
foo(x); // fine
}
You're conflating this with another issue, namely creating a reference to a dynamic object:
T * pt = new T;
T & rt = *pt;
T & x = *new T; // same effect
Note that it's generally very bad style to track a dynamic object only by reference, because the only way to delete it is via delete &x;
, and it's very hard to see that x
needs cleaning up.
There are two immediate alternatives for your design: 1) make a
a member object in B
, or 2) make a
a shared_ptr<A>
or unique_ptr<A>
and change the initalizer to a(new A1)
. It all depends on whether you actually need the polymorphic behaviour, i.e. if you have other constructors for B
which assign a different derived class to a
other than A1
.
This is indeed a bit odd. If you want a member-variable of type A1
(rather than a reference), why not just rearrange your code so that the definition of A1
appears before the definition of B
?
Still, is there a real need for dynamic memory allocation in this case?
No. Just define A1 first and then make it a normal member of B.
Polymorphism works just fine with both references and pointers.
I realize this is a really old post but there is another option you have for handling references for dynamically allocated objects. You can assign a reference to the dynamically allocated object. Below is some dummy code to give you an idea of how this works.
struct A
{
int b;
virtual void print();
A(int val):b(val) {}
};
struct A_child:public A
{
A_child(int val):A(val) {}
void print();
};
void A:print()
{
cout<<"parent\n";
}
void A_child:print()
{
cout<<"child\n";
}
struct test_ref
{
A *& ref;
test_ref(A * ptr) : ref(ptr)
}
int main()
{
test_ref parent(new A(12));
parent.ref->print();
test_ref child(new A_child(15));
child.ref->print();
}
To be honest I am not certain when this is a good idea. I just wanted to show an alternative approach where you dont have to dereference the dynamically allocated memory when initializing an object.
I am also pretty certain dynamically allocating a pointer while initializing a class where the pointer is stored as a reference pointer will probably lead to a memory leak unless you can delete the reference pointer.
Erm, is this not sufficient?
#include <iostream>
struct A;
struct B
{
B(A& a);
void foo();
A& _a;
};
struct A
{
virtual void foo() =0;
};
struct A1 : public A
{
virtual void foo() { std::cout << "A1::foo" << std::endl; }
};
B::B(A& a) : _a(a) {}
void B::foo() { _a.foo(); }
int main(void)
{
A1 a; // instance of A1
B b(a); // construct B with it
b.foo();
}
Still, is there a real need for dynamic memory allocation in this case?
Either the dynamic memory allocation or injecting the reference into B's ctor.