Is there a way to create a Three.js 3D line series with width and thickness?
Even though the Three.js line object supports linewidth, this attribute is not yet suppo
I cooked up a possible solution which I believe meets most of your requirements:
http://codepen.io/garciahurtado/pen/AGEsf?editors=001
The concept is fairly simple: render any arbitrary geometry in "wireframe mode", then apply a full screen GLSL shader to it to add thickness to the wireframe lines.
The shader is inspired by the blur shaders in the ThreeJS distro, which essentially copy the image a bunch of times along the horizontal and vertical axis. I automated that process and made the number of copies a user defined parameter, while ensuring that the copies were offset by 1 pixel.
I used a 3D cube mesh in my demo (with an ortho camera), but it should be trivial to convert it to a poly line.
The real meat and potatoes of this thing is in the custom shader (fragment shader portion):
uniform sampler2D tDiffuse;
uniform int edgeWidth;
uniform int diagOffset;
uniform float totalWidth;
uniform float totalHeight;
const int MAX_LINE_WIDTH = 30; // Needed due to weird limitations in GLSL around for loops
varying vec2 vUv;
void main() {
int offset = int( floor(float(edgeWidth) / float(2) + 0.5) );
vec4 color = vec4( 0.0, 0.0, 0.0, 0.0);
// Horizontal copies of the wireframe first
for (int i = 0; i < MAX_LINE_WIDTH; i++) {
float uvFactor = (float(1) / totalWidth);
float newUvX = vUv.x + float(i - offset) * uvFactor;
float newUvY = vUv.y + (float(i - offset) * float(diagOffset) ) * uvFactor; // only modifies vUv.y if diagOffset > 0
color = max(color, texture2D( tDiffuse, vec2( newUvX, newUvY ) ));
// GLSL does not allow loop comparisons against dynamic variables. Workaround below
if(i == edgeWidth) break;
}
// Now we create the vertical copies
for (int i = 0; i < MAX_LINE_WIDTH; i++) {
float uvFactor = (float(1) / totalHeight);
float newUvX = vUv.x + (float(i - offset) * float(-diagOffset) ) * uvFactor; // only modifies vUv.x if diagOffset > 0
float newUvY = vUv.y + float(i - offset) * uvFactor;
color = max(color, texture2D( tDiffuse, vec2( newUvX, newUvY ) ));
if(i == edgeWidth) break;
}
gl_FragColor = color;
}
As a potential solution. You could take your 3d points, then use THREE.Vector3.project
method to figure out screen-space coordinates. Then simply use canvas and it's lineTo
and moveTo
operations. Canvas 2d context does support variable line thickness.
var w = renderer.domElement.innerWidth;
var h = renderer.domElement.innerHeight;
vector.project(camera);
context2d.lineWidth = 3;
var x = (vector.x+1)*(w/2);
var y = h - (vector.y+1)*(h/2);
context2d.lineTo(x,y);
Also, i don't think you can use the same canvas for that, so it would have to be a layer (another canvas) above your gl rendering context canvas.
If you have infrequent camera changes - it is also possible to construct line out of polygons and update it's vertex positions based on camera transform. For orthographic camera this would work best as only rotations would require vertex position manipulation.
Lastly, you could disable canvas clearing and draw your lines several times with offset inside a circle or a box. After that you can re-enable clearing. This would require several extra draw operations, but it's probably the most scalable approach.
The reason lines don't work as you'd expect out of the box is due to how ANGLE works, it's used in Chrome and in Firefox to my knowledge, it emulates OpenGL via DirectX. Guys from ANGLE state that WebGL spec only requires support of line thickness up-to 1, so they do not see it as a bug and don't intend to "fix" it. Line thickness should work on non-windows OSs though, where ANGLE is not used.