tensorflow: how to rotate an image for data augmentation?

后端 未结 7 2022
遇见更好的自我
遇见更好的自我 2020-12-09 05:27

In tensorflow, I would like to rotate an image from a random angle, for data augmentation. But I don\'t find this transformation in the tf.image module.

相关标签:
7条回答
  • 2020-12-09 05:36

    Because I wanted to be able to rotate tensors I came up with the following piece of code, which rotates a [height, width, depth] tensor by a given angle:

    def rotate_image_tensor(image, angle, mode='black'):
        """
        Rotates a 3D tensor (HWD), which represents an image by given radian angle.
    
        New image has the same size as the input image.
    
        mode controls what happens to border pixels.
        mode = 'black' results in black bars (value 0 in unknown areas)
        mode = 'white' results in value 255 in unknown areas
        mode = 'ones' results in value 1 in unknown areas
        mode = 'repeat' keeps repeating the closest pixel known
        """
        s = image.get_shape().as_list()
        assert len(s) == 3, "Input needs to be 3D."
        assert (mode == 'repeat') or (mode == 'black') or (mode == 'white') or (mode == 'ones'), "Unknown boundary mode."
        image_center = [np.floor(x/2) for x in s]
    
        # Coordinates of new image
        coord1 = tf.range(s[0])
        coord2 = tf.range(s[1])
    
        # Create vectors of those coordinates in order to vectorize the image
        coord1_vec = tf.tile(coord1, [s[1]])
    
        coord2_vec_unordered = tf.tile(coord2, [s[0]])
        coord2_vec_unordered = tf.reshape(coord2_vec_unordered, [s[0], s[1]])
        coord2_vec = tf.reshape(tf.transpose(coord2_vec_unordered, [1, 0]), [-1])
    
        # center coordinates since rotation center is supposed to be in the image center
        coord1_vec_centered = coord1_vec - image_center[0]
        coord2_vec_centered = coord2_vec - image_center[1]
    
        coord_new_centered = tf.cast(tf.pack([coord1_vec_centered, coord2_vec_centered]), tf.float32)
    
        # Perform backward transformation of the image coordinates
        rot_mat_inv = tf.dynamic_stitch([[0], [1], [2], [3]], [tf.cos(angle), tf.sin(angle), -tf.sin(angle), tf.cos(angle)])
        rot_mat_inv = tf.reshape(rot_mat_inv, shape=[2, 2])
        coord_old_centered = tf.matmul(rot_mat_inv, coord_new_centered)
    
        # Find nearest neighbor in old image
        coord1_old_nn = tf.cast(tf.round(coord_old_centered[0, :] + image_center[0]), tf.int32)
        coord2_old_nn = tf.cast(tf.round(coord_old_centered[1, :] + image_center[1]), tf.int32)
    
        # Clip values to stay inside image coordinates
        if mode == 'repeat':
            coord_old1_clipped = tf.minimum(tf.maximum(coord1_old_nn, 0), s[0]-1)
            coord_old2_clipped = tf.minimum(tf.maximum(coord2_old_nn, 0), s[1]-1)
        else:
            outside_ind1 = tf.logical_or(tf.greater(coord1_old_nn, s[0]-1), tf.less(coord1_old_nn, 0))
            outside_ind2 = tf.logical_or(tf.greater(coord2_old_nn, s[1]-1), tf.less(coord2_old_nn, 0))
            outside_ind = tf.logical_or(outside_ind1, outside_ind2)
    
            coord_old1_clipped = tf.boolean_mask(coord1_old_nn, tf.logical_not(outside_ind))
            coord_old2_clipped = tf.boolean_mask(coord2_old_nn, tf.logical_not(outside_ind))
    
            coord1_vec = tf.boolean_mask(coord1_vec, tf.logical_not(outside_ind))
            coord2_vec = tf.boolean_mask(coord2_vec, tf.logical_not(outside_ind))
    
        coord_old_clipped = tf.cast(tf.transpose(tf.pack([coord_old1_clipped, coord_old2_clipped]), [1, 0]), tf.int32)
    
        # Coordinates of the new image
        coord_new = tf.transpose(tf.cast(tf.pack([coord1_vec, coord2_vec]), tf.int32), [1, 0])
    
        image_channel_list = tf.split(2, s[2], image)
    
        image_rotated_channel_list = list()
        for image_channel in image_channel_list:
            image_chan_new_values = tf.gather_nd(tf.squeeze(image_channel), coord_old_clipped)
    
            if (mode == 'black') or (mode == 'repeat'):
                background_color = 0
            elif mode == 'ones':
                background_color = 1
            elif mode == 'white':
                background_color = 255
    
            image_rotated_channel_list.append(tf.sparse_to_dense(coord_new, [s[0], s[1]], image_chan_new_values,
                                                                 background_color, validate_indices=False))
    
        image_rotated = tf.transpose(tf.pack(image_rotated_channel_list), [1, 2, 0])
    
        return image_rotated
    
    0 讨论(0)
  • 2020-12-09 05:38

    This can be done in tensorflow now:

    tf.contrib.image.rotate(images, degrees * math.pi / 180, interpolation='BILINEAR')
    
    0 讨论(0)
  • 2020-12-09 05:38

    Rotation and cropping in TensorFlow

    I personally needed image rotation and cropping out black borders functions in TensorFlow as below. And I could implement this function as below.

    def _rotate_and_crop(image, output_height, output_width, rotation_degree, do_crop):
        """Rotate the given image with the given rotation degree and crop for the black edges if necessary
        Args:
            image: A `Tensor` representing an image of arbitrary size.
            output_height: The height of the image after preprocessing.
            output_width: The width of the image after preprocessing.
            rotation_degree: The degree of rotation on the image.
            do_crop: Do cropping if it is True.
        Returns:
            A rotated image.
        """
    
        # Rotate the given image with the given rotation degree
        if rotation_degree != 0:
            image = tf.contrib.image.rotate(image, math.radians(rotation_degree), interpolation='BILINEAR')
    
            # Center crop to ommit black noise on the edges
            if do_crop == True:
                lrr_width, lrr_height = _largest_rotated_rect(output_height, output_width, math.radians(rotation_degree))
                resized_image = tf.image.central_crop(image, float(lrr_height)/output_height)    
                image = tf.image.resize_images(resized_image, [output_height, output_width], method=tf.image.ResizeMethod.BILINEAR, align_corners=False)
    
        return image
    
    def _largest_rotated_rect(w, h, angle):
        """
        Given a rectangle of size wxh that has been rotated by 'angle' (in
        radians), computes the width and height of the largest possible
        axis-aligned rectangle within the rotated rectangle.
        Original JS code by 'Andri' and Magnus Hoff from Stack Overflow
        Converted to Python by Aaron Snoswell
        Source: http://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders
        """
    
        quadrant = int(math.floor(angle / (math.pi / 2))) & 3
        sign_alpha = angle if ((quadrant & 1) == 0) else math.pi - angle
        alpha = (sign_alpha % math.pi + math.pi) % math.pi
    
        bb_w = w * math.cos(alpha) + h * math.sin(alpha)
        bb_h = w * math.sin(alpha) + h * math.cos(alpha)
    
        gamma = math.atan2(bb_w, bb_w) if (w < h) else math.atan2(bb_w, bb_w)
    
        delta = math.pi - alpha - gamma
    
        length = h if (w < h) else w
    
        d = length * math.cos(alpha)
        a = d * math.sin(alpha) / math.sin(delta)
    
        y = a * math.cos(gamma)
        x = y * math.tan(gamma)
    
        return (
            bb_w - 2 * x,
            bb_h - 2 * y
        )
    

    If you need further implementation of example and visualization in TensorFlow, you can use this repository. I hope this could be helpful to other people.

    0 讨论(0)
  • 2020-12-09 05:40

    For rotating an image or a batch of images counter-clockwise by multiples of 90 degrees, you can use tf.image.rot90(image,k=1,name=None).

    k denotes the number of 90 degrees rotations you want to make.

    In case of a single image, image is a 3-D Tensor of shape [height, width, channels] and in case of a batch of images, image is a 4-D Tensor of shape [batch, height, width, channels]

    0 讨论(0)
  • 2020-12-09 05:43

    Update: see @astromme's answer below. Tensorflow now supports rotating images natively.

    What you can do while there is no native method in tensorflow is something like this:

    from PIL import Image
    sess = tf.InteractiveSession()
    
    # Pass image tensor object to a PIL image
    image = Image.fromarray(image.eval())
    
    # Use PIL or other library of the sort to rotate
    rotated = Image.Image.rotate(image, degrees)
    
    # Convert rotated image back to tensor
    rotated_tensor = tf.convert_to_tensor(np.array(rotated))
    
    0 讨论(0)
  • 2020-12-09 05:47

    for tensorflow 2.0:

    import tensorflow_addons as tfa
    tfa.image.transform_ops.rotate(image, radian)
    
    0 讨论(0)
提交回复
热议问题