This is continuation of my previous question
How to start a thread to keep GUI refreshed?
but since Jon shed new light on th
A user interface that changes faster than the human eye can observe (~25 updates/sec) is not a usable user interface. A typical user will observe the spectacle for at most a minute before giving up completely. You are well past this if you made the UI thread freeze.
You have to design for a human, not a machine.
Since there are too many notifications for the UI to handle, why not just throttle the notifications a bit? This seems to work fine:
if (value % 500 == 0)
OnPropertyChanged("Counter");
You could also limit the frequency of the notifications, using a timer:
public SO4522583()
{
InitializeComponent();
_timer = new DispatcherTimer();
_timer.Interval = TimeSpan.FromMilliseconds(50);
_timer.Tick += new EventHandler(_timer_Tick);
_timer.Start();
DataContext = this;
}
private bool _notified = false;
private DispatcherTimer _timer;
void _timer_Tick(object sender, EventArgs e)
{
_notified = false;
}
...
long counter;
public long Counter
{
get { return counter; }
set
{
if (counter != value)
{
counter = value;
if (!_notified)
{
_notified = true;
OnPropertyChanged("Counter");
}
}
}
}
EDIT: if you cannot afford to skip notifications because they're used by other parts of your code, here's a solution that doesn't require big changes in your code:
UICounter
, which throttles the notifications as shown aboveCounter
setter, update UICounter
UICounter
rather than Counter
In my WPF applications I don't send the property change directly from the model to the GUI. It always goes via a proxy (ViewModel).
The property change events are put in a queue which is read from the GUI thread on a timer.
Don't understand how that can be so much more work. You just need another listener for your model's propertychange event.
Create a ViewModel class with a "Model" property which is your current datacontext. Change the databindings to "Model.Property" and add some code to hook up the events.
It looks something like this:
public MyModel Model { get; private set; }
public MyViewModel() {
Model = new MyModel();
Model.PropertyChanged += (s,e) => SomethingChangedInModel(e.PropertyName);
}
private HashSet<string> _propertyChanges = new HashSet<string>();
public void SomethingChangedInModel(string propertyName) {
lock (_propertyChanges) {
if (_propertyChanges.Count == 0)
_timer.Start();
_propertyChanges.Add(propertyName ?? "");
}
}
// this is connected to the DispatherTimer
private void TimerCallback(object sender, EventArgs e) {
List<string> changes = null;
lock (_propertyChanges) {
_Timer.Stop(); // doing this in callback is safe and disables timer
if (!_propertyChanges.Contain(""))
changes = new List<string>(_propertyChanges);
_propertyChanges.Clear();
}
if (changes == null)
OnPropertyChange(null);
else
foreach (string property in changes)
OnPropertyChanged(property);
}
Your qestion sounds similar to slow-down-refresh-rate-of-bound-datagrid. At least the answers are similar
This isn't really a WPF issue per se. When you have a long-running operation that updates a set of data rapidly, keeping the UI updated - any UI, whether it's WPF or WinForms or just VT100 emulation - is going to present the same problem. UI updates are comparatively slow and complex, and integrating them with a fast-changing complex process without hurting that process requires a clean separation between the two.
That clean separation is even more important in WPF because the UI and the long-running operation need to run on separate threads so that the UI doesn't freeze while the operation is running.
How do you achieve that clean separation? By implementing them independently, providing a mechanism for periodically updating the UI from within the long-running process, and then testing everything to figure out how frequently that mechanism should be invoked.
In WPF, you'll have three components: 1) a view, which is the physical model of your UI, 2) a view model, which is the logical model of the data that is displayed in the UI, and that pushes changes in the data out to the UI through change notification, and 3) your long-running process.
The long-running process can be almost completely unaware of the UI, so long as it does two things. It needs to expose public properties and/or methods so that the view model can examine its state, and it needs to raise an event whenever the UI should be updated.
The view model listens to that event. When the event is raised, it copies state information from the process to its data model, and its built-in change notification pushes those out to the UI.
Multithreading complicates this, but only a bit. The process needs to run on a different thread than the UI, and when its progress-reporting event is handled, its data will be copied across threads.
Once you've built these three pieces, the multithreading is very straightforward to accomplish using WPF's BackgroundWorker
. You create the object that's going to run the process, wire its progress-reporting event up with the BackgroundWorker
's ReportProgress
event, and marshal data from the object's properties to the view model in that event handler. Then fire off the object's long-running method in the BackgroundWorker
's DoWork
event handler and you're good to go.
You need to disconnect the source of the notifications from the target for the notifications. The way you have it set up now, every time the value changes, you go through an entire refresh cycle (which I believe is blocking your processing function from continuing as well). This is not what you want.
Provide an Output stream to your processing function which it would use to write its notifications.
On the monitoring side, attach an input stream to that outputstream and use it as the data source for your UI component. This way there isn't any notification event handling going on at all - the processing is running flat out as fast as it can, outputting monitor data to the output stream you provide. Your monitor UI is simply rendering whatever it receives in the input stream.
You will need a thread to continuously read from the input stream. If no data is available, then it should block. If it reads some data, it should dump it into the UI.
Regards,
Rodney