Coming from a C++ background, Im used to multiple inheritance. I like the feeling of a shotgun squarely aimed at my foot. Nowadays, I work more in C# and Java, where you can
public interface IMagician{ /* declare here all the getter/setter methods that you need; they will be implemented both in TypeA and TypeB, right? */ }
public static class MyExtensions {
public static void doMagic(this IMagician obj)
{
// do your magic here
}
}
Now, the problem is if you REALLY need to use private properties/methods (as opposed to "internal" ones), this approach won't work. Well, actually, you may be able to do your magic if you can read those properties through reflection, but even if it works, it's a rather ugly solution :)
[Note that "doMagic" will automatically appear to become a part of TypeA and TypeB,simply because you implement IMagician - there is no need to have any implementation there ]
DoMagic
works with a lot of Private members. Can you package these private variables internal
possibly? This way the extension method could access them.If nothing seems particularly good, pick what feel best, use it a couple times, and rearrange tomorrow. :)
Replace inheritance with composition.
Move your 'common' function to separate class, create an instance of that class, and insert it to TypeA object and to TypeB object.
You can use the strategy pattern or something like it to use has a (composition) instead of is a (inheritance):
public class TypeA : CustomButtonUserControl, IMagician {
IMagician magicObj = new Magical();
public void DoMagic() {
magicObj.DoMagic();
}
}
public class TypeB : CustomButtonUserControl, IMagician {
IMagician magicObj = new Magical();
public void DoMagic() {
magicObj.DoMagic();
}
}
public class Magical : IMagician {
public void DoMagic() {
// shared magic
}
}
There are other ways to instantiate your private IMagician members (such as passing them as a param via constructor) but the above should get you started.
You can use composition to have magician as a property of typeA and typeB
class Magician : IMagician
{
public void DoMagic()
{}
}
Class TypeA : CustomButtonUserControl
{
//property
Magician magicianInTypeA
}
Class TypeB : CustomTextUserControl
{
//property
Magician magicianInTypeB
}
The composite pattern is meant for complex objects, that means the focus is on one object being made up of other objects. The strategy-pattern can be regarded as a special case of that, but a strategy does not have to be an object. I think this would apply more to your case. Then again, this heavily depends on the nature of what DoMagic()
does.