Using Spark ML transformers I arrived at a DataFrame
where each row looks like this:
Row(object_id, text_features_vector, color_features, type_f
You can use VectorAssembler:
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.sql.DataFrame
val df: DataFrame = ???
val assembler = new VectorAssembler()
.setInputCols(Array("text_features", "color_features", "type_features"))
.setOutputCol("features")
val transformed = assembler.transform(df)
For PySpark example see: Encode and assemble multiple features in PySpark