Based on information in Chapter 7 of 3D Programming For Windows (Charles Petzold), I\'ve attempted to write as helper function that projects a Point3D to a standard 2D Point
Since Windows coordinates are z into the screen (x cross y), I would use something like
screenY = viewPort.ActualHeight * (1 - screenY);
instead of
screenY = screenY * viewPort.ActualHeight;
to correct screenY to accomodate Windows.
Alternately, you could use OpenGL. When you set the viewport x/y/z range, you could leave it in "native" units, and let OpenGL convert to screen coordinates.
Edit: Since your origin is the center. I would try
screenX = viewPort.ActualWidth * (screenX + 1.0) / 2.0
screenY = viewPort.ActualHeight * (1.0 - ((screenY + 1.0) / 2.0))
The screen + 1.0 converts from [-1.0, 1.0] to [0.0, 2.0]. At which point, you divide by 2.0 to get [0.0, 1.0] for the multiply. To account for Windows y being flipped from Cartesian y, you convert from [1.0, 0.0] (upper left to lower left), to [0.0, 1.0] (upper to lower) by subtracting the previous screen from 1.0. Then, you can scale to the ActualHeight.
I've created and succesfully tested a working method by using the 3DUtils Codeplex source library.
The real work is performed in the TryWorldToViewportTransform() method from 3DUtils. This method will not work without it (see the above link).
Very useful information was also found in the article by Eric Sink: Auto-Zoom.
NB. There may be more reliable/efficient approaches, if so please add them as an answer. In the meantime this is good enough for my needs.
/// <summary>
/// Takes a 3D point and returns the corresponding 2D point (X,Y) within the viewport.
/// Requires the 3DUtils project available at http://www.codeplex.com/Wiki/View.aspx?ProjectName=3DTools
/// </summary>
/// <param name="point3D">A point in 3D space</param>
/// <param name="viewPort">An instance of Viewport3D</param>
/// <returns>The corresponding 2D point or null if it could not be calculated</returns>
public Point? Point3DToScreen2D(Point3D point3D, Viewport3D viewPort)
{
bool bOK = false;
// We need a Viewport3DVisual but we only have a Viewport3D.
Viewport3DVisual vpv =VisualTreeHelper.GetParent(viewPort.Children[0]) as Viewport3DVisual;
// Get the world to viewport transform matrix
Matrix3D m = MathUtils.TryWorldToViewportTransform(vpv, out bOK);
if (bOK)
{
// Transform the 3D point to 2D
Point3D transformedPoint = m.Transform(point3D);
Point screen2DPoint = new Point(transformedPoint.X, transformedPoint.Y);
return new Nullable<Point>(screen2DPoint);
}
else
{
return null;
}
}
This doesn't address the algoritm in question but it may be useful for peple coming across this question (as I did).
In .NET 3.5 you can use Visual3D.TransformToAncestor(Visual ancestor). I use this to draw a wireframe on a canvas over my 3D viewport:
void CompositionTarget_Rendering(object sender, EventArgs e)
{
UpdateWireframe();
}
void UpdateWireframe()
{
GeometryModel3D model = cube.Content as GeometryModel3D;
canvas.Children.Clear();
if (model != null)
{
GeneralTransform3DTo2D transform = cube.TransformToAncestor(viewport);
MeshGeometry3D geometry = model.Geometry as MeshGeometry3D;
for (int i = 0; i < geometry.TriangleIndices.Count;)
{
Polygon p = new Polygon();
p.Stroke = Brushes.Blue;
p.StrokeThickness = 0.25;
p.Points.Add(transform.Transform(geometry.Positions[geometry.TriangleIndices[i++]]));
p.Points.Add(transform.Transform(geometry.Positions[geometry.TriangleIndices[i++]]));
p.Points.Add(transform.Transform(geometry.Positions[geometry.TriangleIndices[i++]]));
canvas.Children.Add(p);
}
}
}
This also takes into account any transforms on the model etc.
See also: http://blogs.msdn.com/wpf3d/archive/2009/05/13/transforming-bounds.aspx
It's not clear what you are trying to achieve with aspectRatio coeff. If the point is on the edge of field of view, then it should be on the edge of screen, but if aspectRatio!=1 it isn't. Try setting aspectRatio=1 and make window square. Are the coordinates still incorrect?
ActualWidth
and ActualHeight
seem to be half of the window size really, so screenX will be [-ActualWidth; ActualWidth], but not [0; ActualWidth]. Is that what you want?
screenX and screenY should be getting computed relative to screen center ...
I don't see a correction for the fact that when drawing using the Windows API, the origin is in the upper left corner of the screen. I am assuming that your coordinate system is
y
|
|
+------x
Also, is your coordinate system assuming origin in the center, per Scott's question, or is it in the lower left corner?
But, the Windows screen API is
+-------x
|
|
|
y
You would need the coordinate transform to go from classic Cartesian to Windows.