The main idea is to convert TFRecords into numpy arrays. Assume that the TFRecord stores images. Specifically:
Oops, it was a silly mistake on my part. I used a string_input_producer but forgot to run the queue_runners.
with tf.Session() as sess:
filename_queue = tf.train.string_input_producer(["../data/svhn/svhn_train.tfrecords"])
image, label, height, width, depth = read_and_decode(filename_queue)
image = tf.reshape(image, tf.pack([height, width, 3]))
image.set_shape([32,32,3])
init_op = tf.initialize_all_variables()
sess.run(init_op)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for i in range(1000):
example, l = sess.run([image, label])
print (example,l)
coord.request_stop()
coord.join(threads)