I\'m importing large amounts of http logs (80GB+) into a Pandas HDFStore for statistical processing. Even within a single import file I need to batch the content as I load i
You can do it like this. Only trick is that the first time the store table doesn't exist, so get_storer
will raise.
import pandas as pd
import numpy as np
import os
files = ['test1.csv','test2.csv']
for f in files:
pd.DataFrame(np.random.randn(10,2),columns=list('AB')).to_csv(f)
path = 'test.h5'
if os.path.exists(path):
os.remove(path)
with pd.get_store(path) as store:
for f in files:
df = pd.read_csv(f,index_col=0)
try:
nrows = store.get_storer('foo').nrows
except:
nrows = 0
df.index = pd.Series(df.index) + nrows
store.append('foo',df)
In [10]: pd.read_hdf('test.h5','foo')
Out[10]:
A B
0 0.772017 0.153381
1 0.304131 0.368573
2 0.995465 0.799655
3 -0.326959 0.923280
4 -0.808376 0.449645
5 -1.336166 0.236968
6 -0.593523 -0.359080
7 -0.098482 0.037183
8 0.315627 -1.027162
9 -1.084545 -1.922288
10 0.412407 -0.270916
11 1.835381 -0.737411
12 -0.607571 0.507790
13 0.043509 -0.294086
14 -0.465210 0.880798
15 1.181344 0.354411
16 0.501892 -0.358361
17 0.633256 0.419397
18 0.932354 -0.603932
19 -0.341135 2.453220
You actually don't necessarily need a global unique index, (unless you want one) as HDFStore
(through PyTables
) provides one by uniquely numbering rows. You can always add these selection parameters.
In [11]: pd.read_hdf('test.h5','foo',start=12,stop=15)
Out[11]:
A B
12 -0.607571 0.507790
13 0.043509 -0.294086
14 -0.465210 0.880798