I would like to reproduce the following figure in MATLAB:
There are two classes of po
I'll assume there is only one set of points given in a single matrix, e.g.
B = A(1:10,2:3);
you can reproduce this procedure for each data set.
mean
bsxfun
eig
The successive steps are illustrated below:
Center = mean(B,1);
Centered_data = bsxfun(@minus,B,Center);
[AX,MAG] = eig(Centered_data' * Centered_data);
The columns of AX contain the vectors describing the principal axis of the ellipsoid while the diagonal of MAG contains information on their magnitude. To plot the ellipsoid, scale each principal axis with the square root of its magnitude.
Hope this helps.
A.
Consider the code:
%# generate data
num = 50;
X = [ mvnrnd([0.5 1.5], [0.025 0.03 ; 0.03 0.16], num) ; ...
mvnrnd([1 1], [0.09 -0.01 ; -0.01 0.08], num) ];
G = [1*ones(num,1) ; 2*ones(num,1)];
gscatter(X(:,1), X(:,2), G)
axis equal, hold on
for k=1:2
%# indices of points in this group
idx = ( G == k );
%# substract mean
Mu = mean( X(idx,:) );
X0 = bsxfun(@minus, X(idx,:), Mu);
%# eigen decomposition [sorted by eigen values]
[V D] = eig( X0'*X0 ./ (sum(idx)-1) ); %#' cov(X0)
[D order] = sort(diag(D), 'descend');
D = diag(D);
V = V(:, order);
t = linspace(0,2*pi,100);
e = [cos(t) ; sin(t)]; %# unit circle
VV = V*sqrt(D); %# scale eigenvectors
e = bsxfun(@plus, VV*e, Mu'); %#' project circle back to orig space
%# plot cov and major/minor axes
plot(e(1,:), e(2,:), 'Color','k');
%#quiver(Mu(1),Mu(2), VV(1,1),VV(2,1), 'Color','k')
%#quiver(Mu(1),Mu(2), VV(1,2),VV(2,2), 'Color','k')
end
If you want the ellipse to represent a specific level of standard deviation, the correct way of doing is by scaling the covariance matrix:
STD = 2; %# 2 standard deviations
conf = 2*normcdf(STD)-1; %# covers around 95% of population
scale = chi2inv(conf,2); %# inverse chi-squared with dof=#dimensions
Cov = cov(X0) * scale;
[V D] = eig(Cov);
I'd try the following approach: