I have 2 Data Frames, one named USERS and another named EXCLUDE. Both of them have a field named \"email\".
Basically, I want to remove every row in USERS that has a
You can use boolean indexing and condition with isin, inverting boolean Series
is by ~
:
import pandas as pd
USERS = pd.DataFrame({'email':['a@g.com','b@g.com','b@g.com','c@g.com','d@g.com']})
print (USERS)
email
0 a@g.com
1 b@g.com
2 b@g.com
3 c@g.com
4 d@g.com
EXCLUDE = pd.DataFrame({'email':['a@g.com','d@g.com']})
print (EXCLUDE)
email
0 a@g.com
1 d@g.com
print (USERS.email.isin(EXCLUDE.email))
0 True
1 False
2 False
3 False
4 True
Name: email, dtype: bool
print (~USERS.email.isin(EXCLUDE.email))
0 False
1 True
2 True
3 True
4 False
Name: email, dtype: bool
print (USERS[~USERS.email.isin(EXCLUDE.email)])
email
1 b@g.com
2 b@g.com
3 c@g.com
Another solution with merge:
df = pd.merge(USERS, EXCLUDE, how='outer', indicator=True)
print (df)
email _merge
0 a@g.com both
1 b@g.com left_only
2 b@g.com left_only
3 c@g.com left_only
4 d@g.com both
print (df.loc[df._merge == 'left_only', ['email']])
email
1 b@g.com
2 b@g.com
3 c@g.com