In Bokeh, how do I add tooltips to a Timeseries chart (hover tool)?

前端 未结 4 1458
半阙折子戏
半阙折子戏 2020-12-08 14:03

Is it possible to add Tooltips to a Timeseries chart?

In the simplified code example below, I want to see a single column name (\'a\',\'b\' or \'c\') when the mouse

相关标签:
4条回答
  • 2020-12-08 14:33

    Below is what I came up with.

    Its not pretty but it works.

    Im still new to Bokeh (& Python for that matter) so if anyone wants to suggest a better way to do this, please feel free.

    enter image description here

    import pandas as pd
    import numpy as np
    from bokeh.charts import TimeSeries
    from bokeh.models import HoverTool
    from bokeh.plotting import show
    
    toy_df = pd.DataFrame(data=np.random.rand(5,3), columns = ('a', 'b' ,'c'), index = pd.DatetimeIndex(start='01-01-2015',periods=5, freq='d'))       
    
     _tools_to_show = 'box_zoom,pan,save,hover,resize,reset,tap,wheel_zoom'        
    
    p = figure(width=1200, height=900, x_axis_type="datetime", tools=_tools_to_show)
    
    
    # FIRST plot ALL lines (This is a hack to get it working, why can't i pass in a dataframe to multi_line?)   
    # It's not pretty but it works. 
    # what I want to do!: p.multi_line(df)
    ts_list_of_list = []
    for i in range(0,len(toy_df.columns)):
        ts_list_of_list.append(toy_df.index.T)
    
    vals_list_of_list = toy_df.values.T.tolist()
    
    # Define colors because otherwise multi_line will use blue for all lines...
    cols_to_use =  ['Black', 'Red', 'Lime']
    p.multi_line(ts_list_of_list, vals_list_of_list, line_color=cols_to_use)
    
    
    # THEN put  scatter one at a time on top of each one to get tool tips (HACK! lines with tooltips not yet supported by Bokeh?) 
    for (name, series) in toy_df.iteritems():
        # need to repmat the name to be same dimension as index
        name_for_display = np.tile(name, [len(toy_df.index),1])
    
        source = ColumnDataSource({'x': toy_df.index, 'y': series.values, 'series_name': name_for_display, 'Date': toy_df.index.format()})
        # trouble formating x as datestring, so pre-formating and using an extra column. It's not pretty but it works.
    
        p.scatter('x', 'y', source = source, fill_alpha=0, line_alpha=0.3, line_color="grey")     
    
        hover = p.select(dict(type=HoverTool))
        hover.tooltips = [("Series", "@series_name"), ("Date", "@Date"),  ("Value", "@y{0.00%}"),]
        hover.mode = 'mouse'
    
    show(p)
    
    0 讨论(0)
  • 2020-12-08 14:33

    I’m not familiar with Pandas,I just use python list to show the very example of how to add tooltips to muti_lines, show series names ,and properly display date/time。Below is the result. Thanks to @bs123's answer and @tterry's answer in Bokeh Plotting: Enable tooltips for only some glyphs

    my result

    # -*- coding: utf-8 -*-
    
    from bokeh.plotting import figure, output_file, show, ColumnDataSource
    from bokeh.models import  HoverTool
    from datetime import datetime
    
    dateX_str = ['2016-11-14','2016-11-15','2016-11-16']
    #conver the string of datetime to python  datetime object
    dateX = [datetime.strptime(i, "%Y-%m-%d") for i in dateX_str]
    
    v1= [10,13,5]
    v2 = [8,4,14]
    v3= [14,9,6]
    v = [v1,v2,v3]
    
    names = ['v1','v2','v3']
    colors = ['red','blue','yellow']
    
    output_file('example.html',title = 'example of add tooltips to multi_timeseries')
    tools_to_show = 'hover,box_zoom,pan,save,resize,reset,wheel_zoom'
    p = figure(x_axis_type="datetime", tools=tools_to_show)
    
    #to show the tooltip for multi_lines,you need use the ColumnDataSource which define the data source of glyph
    #the key is to use the same column name for each data source of the glyph
    #so you don't have to add tooltip for each glyph,the tooltip is added to the figure
    
    #plot each timeseries line glyph
    for i in xrange(3):
    # bokeh can't show datetime object in tooltip properly,so we use string instead
        source = ColumnDataSource(data={
                    'dateX': dateX, # python datetime object as X axis
                    'v': v[i],
                    'dateX_str': dateX_str, #string of datetime for display in tooltip
                    'name': [names[i] for n in xrange(3)]
                })
        p.line('dateX', 'v',source=source,legend=names[i],color = colors[i])
        circle = p.circle('dateX', 'v',source=source, fill_color="white", size=8, legend=names[i],color = colors[i])
    
        #to avoid some strange behavior(as shown in the picture at the end), only add the circle glyph to the renders of hover tool
        #so tooltip only takes effect on circle glyph
        p.tools[0].renderers.append(circle)
    
    # show the tooltip
    hover = p.select(dict(type=HoverTool))
    hover.tooltips = [("value", "@v"), ("name", "@name"), ("date", "@dateX_str")]
    hover.mode = 'mouse'
    show(p)
    

    tooltips with some strange behavior,two tips displayed at the same time

    0 讨论(0)
  • 2020-12-08 14:33

    The original poster's code doesn't work with the latest pandas (DatetimeIndex constructor has changed), but Hovertool now supports a formatters attribute that lets you specify a format as a strftime string. Something like

    fig.add_tool(HoverTool(
        tooltip=[
            ('time', '@index{%Y-%m-%d}')
        ],
        formatters={
            '@index': 'datetime'
        }
    ))
    
    0 讨论(0)
  • 2020-12-08 14:38

    Here is my solution. I inspected the glyph render data source to see what are the names on it. Then I use those names on the hoover tooltips. You can see the resulting plot here.

    import numpy as np
    from bokeh.charts import TimeSeries
    from bokeh.models import HoverTool
    from bokeh.plotting import show
    
    toy_df = pd.DataFrame(data=np.random.rand(5,3), columns = ('a', 'b' ,'c'), index = pd.DatetimeIndex(start='01-01-2015',periods=5, freq='d'))   
    #Bockeh display dates as numbers so convert to string tu show correctly
    toy_df.index = toy_df.index.astype(str) 
    p = TimeSeries(toy_df, tools='hover')  
    
    #Next 3 lines are to inspect how are names on gliph to call them with @name on hover
    #glyph_renderers = p.select(dict(type=GlyphRenderer))
    #bar_source = glyph_renderers[0].data_source
    #print(bar_source.data)  #Here we can inspect names to call on hover
    
    
    hover = p.select(dict(type=HoverTool))
    hover.tooltips = [
            ("Series", "@series"),
            ("Date", "@x_values"),
            ("Value", "@y_values"),
            ]
    
    show(p)
    
    0 讨论(0)
提交回复
热议问题