I am asked to reverse a which takes head as parameter where as head is a linked list e.g.: 1 -> 2 -> 3 which was returned from a function already defined I tried to implemen
U can use mod function to get the remainder for each iteration and obviously it will help reversing the list . I think you are a student from Mission R and D
head=None
prev=None
for i in range(len):
node=Node(number%10)
if not head:
head=node
else:
prev.next=node
prev=node
number=number/10
return head
The accepted answer doesn't make any sense to me, since it refers to a bunch of stuff that doesn't seem to exist (number, node, len as a number rather than a function). Since the homework assignment this was for is probably long past, I'll post what I think is the most effective code.
This is for doing a destructive reversal, where you modify the existing list nodes:
def reverse_list(head):
new_head = None
while head:
head.next, head, new_head = new_head, head.next, head # look Ma, no temp vars!
return new_head
A less fancy implementation of the function would use one temporary variable and several assignment statements, which may be a bit easier to understand:
def reverse_list(head):
new_head = None # this is where we build the reversed list (reusing the existing nodes)
while head:
temp = head # temp is a reference to a node we're moving from one list to the other
head = temp.next # the first two assignments pop the node off the front of the list
temp.next = new_head # the next two make it the new head of the reversed list
new_head = temp
return new_head
An alternative design would be to create an entirely new list without changing the old one. This would be more appropriate if you want to treat the list nodes as immutable objects:
class Node(object):
def __init__(self, value, next=None): # if we're considering Nodes to be immutable
self.value = value # we need to set all their attributes up
self.next = next # front, since we can't change them later
def reverse_list_nondestructive(head):
new_head = None
while head:
new_head = Node(head.value, new_head)
head = head.next
return new_head
def reverseLinkedList(head):
current = head
previous = None
nextNode = None
while current:
nextNode = current.nextNode
current.nextNode = previous
previous = current
current = nextNode
return previous
Here is a way to reverse the list 'in place'. This runs in constant time O(n) and uses zero additional space.
def reverse(head):
if not head:
return head
h = head
q = None
p = h.next
while (p):
h.next = q
q = h
h = p
p = h.next
h.next = q
return h
Here's an animation to show the algorithm running.
(# symbolizes Null/None for purposes of animation)
You can do the following to reverse a singly linked list (I assume your list is singly connected with each other).
First you make a class Node, and initiate a default constructor that will take the value of data in it.
class Node:
def __init__(self, data):
self.data = data
self.next = None
This solution will reverse your linked list "iteratively". I am making a class called SinglyLinkedList which will have a constructor:
class SinglyLinkedList:
def __init__(self):
self.head = None
then I have written a method to reverse the list, print the length of the list, and to print the list itself:
# method to REVERSE THE LINKED LIST
def reverse_list_iterative(self):
prev = None
current = self.head
following = current.next
while (current):
current.next = prev
prev = current
current = following
if following:
following = following.next
self.head = prev
# Method to return the length of the list
def listLength(self):
count = 0
temp = self.head
while (temp != None):
temp = temp.next
count += 1
return count
# Method to print the list
def printList(self):
if self.head == None:
print("The list is empty")
else:
current_node = self.head
while current_node:
print(current_node.data, end = " -> ")
current_node = current_node.next
if current_node == None:
print("End")`
After that I hard code the list, and its contents and then I link them
if __name__ == '__main__':
sll = SinglyLinkedList()
sll.head = Node(1)
second = Node(2)
third = Node(3)
fourth = Node(4)
fifth = Node(5)
# Now linking the SLL
sll.head.next = second
second.next = third
third.next = fourth
fourth.next = fifth
print("Length of the Singly Linked List is: ", sll.listLength())
print()
print("Linked List before reversal")
sll.printList()
print()
print()
sll.reverse_list_iterative()
print("Linked List after reversal")
sll.printList()
Output will be:
Length of the Singly Linked List is: 5
Linked List before reversal 1 -> 2 -> 3 -> 4 -> 5 -> End
Linked List after reversal
5 -> 4 -> 3 -> 2 -> 1 -> End
