I know that LIBSVM only allows one-vs-one classification when it comes to multi-class SVM. However, I would like to tweak it a bit to perform one-against-all classification.
From the code I can see you are trying to first turn the labels into "some class" vs "not this class", and then invoke LibSVM to do training and testing. Some questions and suggestions:
TrainingLabel
for training? In my opinion, should it be model = svmtrain(newClass, TrainVec, '-c 1 -g 0.00154');
?-b
switch in LibSVM to enable probability output will also improve the accuracy.%# Fisher Iris dataset
load fisheriris
[~,~,labels] = unique(species); %# labels: 1/2/3
data = zscore(meas); %# scale features
numInst = size(data,1);
numLabels = max(labels);
%# split training/testing
idx = randperm(numInst);
numTrain = 100; numTest = numInst - numTrain;
trainData = data(idx(1:numTrain),:); testData = data(idx(numTrain+1:end),:);
trainLabel = labels(idx(1:numTrain)); testLabel = labels(idx(numTrain+1:end));
%# train one-against-all models
model = cell(numLabels,1);
for k=1:numLabels
model{k} = svmtrain(double(trainLabel==k), trainData, '-c 1 -g 0.2 -b 1');
end
%# get probability estimates of test instances using each model
prob = zeros(numTest,numLabels);
for k=1:numLabels
[~,~,p] = svmpredict(double(testLabel==k), testData, model{k}, '-b 1');
prob(:,k) = p(:,model{k}.Label==1); %# probability of class==k
end
%# predict the class with the highest probability
[~,pred] = max(prob,[],2);
acc = sum(pred == testLabel) ./ numel(testLabel) %# accuracy
C = confusionmat(testLabel, pred) %# confusion matrix
Instead of probability estimates, you can also use the decision values as follows
[~,~,d] = svmpredict(double(testLabel==k), testData, model{k});
prob(:,k) = d * (2 * model{i}.Label(1) - 1);
to achieve the same purpose.